Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Теплопритоки через ограждения

а) теплоприток из внешней среды в морозильную камеру НТК

1 = k2 · Sнтк ΔТ

б) теплоприток из внешней среды в холодильную камеру

Q"1 = k2 · Sнтк ΔТ

в) теплоприток из внешней среды в камеру для хранения овощей и фруктов

Q"’1 = k2 · Sнтк ΔТ

Q1 = общий теплоприток через все ограждения

Q1 = Q΄1 + Q"1 + Q"’1

Тепловая нагрузка от воздухообмена:

Q2 = 0,05 (Q1 + Q3)

а) Тепловая нагрузка от воздухообмена в ХК

2 = 0,05(Q΄1+ Q3΄)

б) Тепловая нагрузка от воздухообмена в НТК

Q"2 = 0,05(Q"1 + Q"3)

в) Тепловая нагрузка от воздухообмена в камеру для хранения овощей и фруктов

Q’’΄2 = 0,05(Q΄1+ Q3΄)

Определяем холодопроизводительность холодильного агрегата для холодильника

Общая тепловая нагрузка:

0 х.а = Q1 + Q2 + Q3 + Q4, где

Q4 = 1,05 (Q1 + Q2 + Q3)

а) определяем холодопроизводительность холодильного агрегата для ХК

0 х.а(хк)= Q1΄+ Q2΄+ Q3΄+ Q4΄

Результаты расчета для надежности увеличиваются на 5-10%. Это зависит от достоверности данных, применяющихся при расчете тепловой нагрузки.

Q"0 х.а = 1,05 Σ Qi=1,05(Q΄0 х.а(хк))

б) определяем холодопроизводительность холодильного агрегата для НТК.

Q΄΄0 х.а(нтк)= Q1΄΄+ Q2΄΄+ Q3΄΄+ Q4΄΄

Результаты расчета для надежности увеличиваются на 5-10%. Это зависит от достоверности данных, применяющихся при расчете тепловой нагрузки.

Q"0 х.а = 1,05 Σ Qi=1,05(Q΄΄0 х.а(нтк))

в) определяем холодопроизводительность холодильного агрегата для камеры для хранения овощей и фруктов

Q΄΄0 х.а(нтк)= Q1΄΄+ Q2΄΄+ Q3΄΄+ Q4΄΄

Результаты расчета для надежности увеличиваются на 5-10%. Это зависит от достоверности данных, применяющихся при расчете тепловой нагрузки.

Q"0 х.а = 1,05 Σ Qi=1,05(Q΄΄0 х.а(нтк))

Учитывая, что холодильный агрегат бытового холодильника с некоторым коэффициентом рабочего времени в, равным 0,35 холодопроизводительность холодильного агрегата определяется по формуле:

Q0 х.а = Q"0 х.а / в

а) холодопроизводительность в (ХК)

Q0 х.а = Q"0 х.а(хк) / в

б) холодопроизводительность в (НТК)

Q0 х.а = Q"0 х.а(нтк) / в

в) холодопроизводительность в камере для хранения овощей и фруктов

Q0 х.а = Q"0 х.а(нтк) / в

 

2. Методы оптимизации и формирования обобщенного критерия качества проектирования.

Электронный регулятор температуры холодильника STINOL-104

Предлагаемый блок управления выполняет следующие функции:

включая и выключая компрессор, поддерживает в холодильной камере заданную температуру, заменяя штатный терморегулятор, причем имеется возможность регулировать гистерезис — разность температуры включения и выключения компрессора;

принудительно выключает компрессор при значительном отклонении напряжения в сети от нормы;

не допускает повторного включения компрессора ранее 5 мин после выключения по любой причине, в том числе после вызванного отклонением сетевого напряжения от нормы или инициированного терморегулятором.

Последнее особенно важно, так как опасную ситуацию легко спровоцировать, сразу же после выключения компрессора резко повернув регулятор температуры в сторону ее понижения или открыв дверь холодильной камеры. Предусмотрена индикация состояния блока управления светодиодами «Работа» (компрессор включен), “Пауза” (компрессор выключен), «Блокировка» (не истек пятиминутный запрет включения), «<» (напряжение в сети ниже минимально допустимого), «>» (напряжение в сети выше максимально допустимого).

Схема блока показана на {рис. 1}.

Рис. 1 Принципиальная схема регулятора температуры холодильника STINOL

Он состоит из узла терморегулятора на микросхеме DA2, таймера задержки включения на транзисторе VT1 и элементах DD1.1, DD1.2, узла контроля напряжения сети на элементах DD1.3, DD1.4 и микросхеме DD2, исполнительного устройства на транзисторах VT2, VT3. Соединенные параллельно контакты реле К1 включены в цепь двигателя компрессора вместо контактов штатного терморегулятора холодильника.

Узел питания блока состоит из трансформатора Т1, выпрямителя (диодный мост VD1) и интегрального стабилизатора DA1 на напряжение 9 В. Чтобы изменение нагрузки на выпрямитель при срабатывании и отпускании реле К1 не влияло на работу узла контроля напряжения, предусмотрен резистор R27, подключаемый транзистором VT3 к выпрямителю, когда обмотка реле обесточена. Сопротивление резистора равно сопротивлению обмотки реле, поэтому потребляемый от выпрямителя ток остается неизменным.

Допустим, блок включен в сеть при номинальном напряжении 220В и узел контроля напряжения не оказывает влияния на его работу. Транзистор VT1 закрыт, конденсатор С2 разряжен, логический уровень на выходе элемента DD1.2 низкий, диод VD3 открыт, поэтому терморегулятор на ОУ DA2 заблокирован в состоянии, соответствующем низкой температуре в холодильной камере, следовательно, выключенному компрессору. Транзистор VT2 закрыт, реле К1 обесточено. Горят светодиоды HL1 «Блокировка» и HL5 «Пауза».

Через 5 мин после зарядки конденсатора С2 через резистор R2 до порога переключения триггера Шмитта на элементах DD1.1, DD1.2 уровень на выходе последнего станет высоким, диод VD3 будет закрыт и терморегулятор получит возможность работать. Светодиод HL1 погаснет.

С повышением температуры в холодильной камере сопротивление терморезистора RK1 и падение напряжения такова, что напряжение на инвертирующем входе ОУ DA2 меньше, чем на неинвертирующем, уровень на выходе ОУ — высокий, что приводит к открыванию транзистора VT2 и срабатыванию реле К1, включающего компрессор. Светодиод HL4 светится, HL5 — нет. С понижением температуры в холодильной камере напряжение на инвертирующем входе ОУ растет, что приводит к изменению состояния ОУ и выключению компрессора. Светодиод HL4 гаснет, HL5 — светится.

Перепад напряжения на коллекторе транзистора VT2 в момент отпускания реле вызывает зарядку конденсатора С6 и кратковременное (на 20 мс) открывание транзистора VT1 импульсом зарядного тока. Разряженный через открывшийся транзистор конденсатор С2 вновь, как после подключения блока к сети, начинает медленно заряжаться, что приводит к пятиминутному запрету включения компрессора. Диод VD2 защищает эмиттерный переход транзистора VT1 от отрицательного импульса при разрядке конденсатора С6 через открывшийся в момент включения реле К1 транзистор VT2.

Необходимую температуру в холодильной камере устанавливают с помощью переменного резистора R16. Ширину петли гистерезиса терморегулятора регулируют переменным резистором R20. Необходимость изменения гистерезиса в процессе эксплуатации спорна, однако при первоначальной регулировке без этого не обойтись. Гистерезис должен быть достаточным для того, чтобы компрессор не включался слишком часто, а в перерывах его работы температура стенок холодильной камеры достигала положительного значения, и образовавшийся на них иней таял, не накапливаясь. Рассмотрим работу узла контроля сетевого напряжения. Если оно находится в допустимых пределах, напряжение на входах элемента DD1.3 ниже, а на входах элемента DD2.1 выше порога их переключения. Уровни на обоих входах элемента DD2.3 высокие, а на его выходе — низкий, дающий возможность всем другим узлам блока работать описанным выше образом.

При напряжении в сети меньше допустимого элемент DD2.1 изменит состояние. Логический уровень на его выходе станет высоким, такой же будет и на выходах элементов DD2.3, DD2.4. Светодиод HL3 зажжется, а транзистор VT1, открытый напряжением, поступающим на его базу через резистор R19, разрядит конденсатор С2, чем заблокирует компрессор. С восстановлением нормального напряжения светодиод HL3 погаснет, транзистор VT1 будет закрыт и через необходимое для зарядки конденсатора С2 время будет разрешена работа терморегулятора.

При напряжении в сети, превышающем допустимое, низкий уровень на выходе элемента DD1.3 приведет к установке высокого на выходах элементов DD1,4 и. DD2.3. Далее все происходит так же, как при понижении напряжения, только вместо светодиода HL3 светится HL2.

Значения сетевого напряжения, при которых срабатывает защита, рекомендуется установить равными 242 (подстроечным резистором R5) и 187В (подстроечным резистором R6). Перерыв в подаче электроэнергии блок воспримет как недопустимое понижение напряжения. Важно, чтобы повторное включение компрессора было запрещено, если длительность перерыва превысила требующуюся для его остановки. Однако реакция не должна быть и слишком быстрой — возрастет вероятность ложных срабатываний (например, вызванных включением в ту же сеть мощных электроприборов).

Время срабатывания описываемого устройства при скачкообразном уменьшении напряжения в сети — приблизительно 65 мс — складывается из требующегося на разрядку конденсатора С1 до напряжения, соответствующего допустимому минимуму, и времени разрядки конденсатора С2 через открывшийся транзистор VT1. Время реакции на скачкообразное повышение напряжения в сети меньше — 25...40 мс. Оно расходуется на дозарядку конденсатора С1 до установленного порога и разрядку конденсатора С2.

Для технологического процесса ремонта схема оптимизации имеет вид, показанный на рис. 6.2.

На вход схемы подаются исходные данные . В блоке "Расчет признаков готовой продукции" производится расчет уравнений регрессии. Получаются значения по математической модели (для всех показателей качества). На данном этапе можно говорить о прогнозировании качества, но не управлении им.

В блоке "Формирование обобщенного показателя качества " идет формирование обобщенного показателя в аддитивной форме.

Рис. 6.2. Схема проведения оптимизации параметров ТП ремонта

В блоке " ?" происходит сравнение обобщенного показателя качества с оптимальным значением. Если , то переходим к формированию экономических показателей. Обычно это отношение должно быть близко к 1, но, как и в случае к.п.д., единицы не достигает. Поэтому в алгоритме заложено правило останова: процесс поиска оптимальных параметров прекращается, если он не приводит к улучшению обобщенного критерия качества. Если условие не выполняется, то производится поиск оптимального соотношения параметров: варьируют значения параметров в рамках технологических допусков.

Условием состоятельности обобщенного показателя является соответствие его целям управления качеством продукции. Поэтому расчет такого показателя должен проводиться в соответствии с картой технического уровня с учетом перспективных показателей качества.

 

3. Функциональная модель для поиска наиболее характерной неисправности объекта

Неисправность №1 Холодильник плохо морозит.

4) Насос

5) Отсасывающий клапан

6) Соединительная трубка

7) Нагнетательный клапан

8) Соединительная трубка

9) Нагнетательная трубка

10) Конденсатор

11) Осушитель

12) Капиллярная трубка

13) Испаритель

14) Отсасывающая трубка

18) Резиновая прокладка двери холодильника

20) Электродвигатель

 

4. Особенности ремонта и технического обслуживания

Замена электролампочки освещения холодильной камеры.

Вывинтив самонарезной винт 2 (см. рис. 5), снимают плафон 21, нажав на верхнюю и нижнюю защелки у его основания и потянув на себя.

Демонтаж дверного выключателя и электропатрона.

Снимают пробку 17 и вывинчивают самонарезной винт 2. Потянув блок (коробку) освещения 16 на себя, снимают его. Повернув блок освещения на 90°, надавливают на защелки крепления дверного выключателя 14 и снимают дверной выключатель, отсоединив его от электросхемы. Отсоединяют электропатрон от электросхемы. Потянув на 5 мм электропатрон с переходником на себя и повернув его на 90°, отсоединяют патрон от переходника.

Демонтаж светосигнальной лампочки и терморегулятора.

Тонкой отверткой выводят из зацепления с панелью управления 7 трафаретный профиль (накладку) 10 и снимают его.

Демонтируют ручку 9 терморегулятора 8. Вывинчивают три самонарезных винта крепления основания 4 приборной панели. Вывинчивают два винта 2 крепления верхней навески двери 5, демонтируют навеску и верхнюю дверь. Снимают приборную панель с основанием, разъединяют их, вывинтив винты. Заменяют вышедшую из строя светосигнальную лампочку 20. Отвинчивают самонарезные винты 2 крепления крышки 3 (см. рис. 4) холодильника и снимают крышку. Вывинчивают винты крепления конденсатора 4. Слегка отводят его от задней стенки. Отсоединяют сильфонную трубку терморегулятора от задней стенки холодильной камеры, вывинтив самонарезной винт 2 (см. рис. 5) его крепления. Разгерметизируют места выхода сильфонной трубки из холодильника выводят трубку из холодильника. Отсоединяют терморегулятор от электросхемы, освобождают от корпуса и меняют.

Демонтаж пускового и защитного реле.

Для замены пускового и защитного реле снимают крышку с клеммами реле, нажав на защелку. Отсоединяют зажимы пусковых и защитных реле и снимают реле.

Замена дверей.

Придерживая снизу, снимают дверь холодильной камеры, вывинтив винты 6 (см. рис. 3) крепления нижней навески 15. Придерживая снизу, снимают дверь морозильной камеры, вывинтив винты 2 (см. рис. 5) крепления центральной навески 12. Вывинчивают все винты крепления нижней двери к контейнеру для хранения овощей и фруктов. Снимают дверь и прокладку в сборе.

Демонтаж блока воздухоохлаждения.

Вывинчивают два винта 6 (см. рис. 3) и снимают панель возврата воздуха 5. Вывинчивают четыре винта 7 (см. рис. 2) и отделяют соединительную крышку 18. Отсоединяют зажимы электропроводки (темно-синий провод) от выключателя 16 и электропровод (красный), стягивающий разъемы. Снимают соединительную крышку. Отвинтив винты, снимают крышку 20, отсоединяют таймер 19 от электросхемы, отвинчивают винты и снимают таймер. Разъединяют групповые разъемы электропроводки, скрытые соединительной крышкой. Слева и справа вывинчивают винты крепления нижней обшивки сепаратора 15 к шкафу и, пропуская провода с разъемами сквозь окна, снимают ее вместе с изоляционной обшивкой 14, электронагревателем поддона испарителя (сопротивление сточного желоба) 13 и нижним ящиком испарителя 12.

Вывинтив винты 7, отсоединяют изоляционную обшивку от электронагревателя поддона испарителя и нижней обшивки сепаратора. Отсоединяют электронагреватель поддона испарителя от электросхемы. Вывинтив винты, демонтируют тепловое реле ТR1 (включения вентилятора) 10 и смонтированные в одном корпусе тепловое реле электронагревателя испарителя ТR2 и предохранитель ТF, закрепленные на испарителе, иотделяют их от электросхемы.

Вывинтив винты, освобождают, провод, губку и изоляциюпровода. Вывинтив винты крепления перегородной камеры 4 и отделив электродвигатель вентилятора от электросхемы, снимают блок вентилятора. Потянув на себя, снимают крыльчатку 6. Отвинтив винты крепления скобы 24 электродвигателя 7, снимают электродвигатель. Ослабляют винты крепления испарителя к корпусу и отсоединяют его от корпуса.

Отвинчивают винты крепления верхнего ящика испарителя 8 к испарителю 22 и снимают, верхний ящик. Надрезают хомутики крепления электронагревателя испарителя 23, отсоединяют его от электросхемы и снимают.

Замена противоконденсатного электронагревателя.

Придерживая снизу, снимают дверь холодильной камеры. Вывинтив винты 6, снимают центральную декоративную планку 23. Отделяют от электросхемы противоконденсатный электронагреватели 14 и снимают его.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...