Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Характер воздействия ударной волны на

людей и животных. Ударная волна может нанести неза­щищенным людям и животным травматические поражения, контузии или быть причиной их гибели. Поражения могут быть непо­средственными или косвенными.

Непосредственное поражение ударной волной возникает в ре­зультате воздействия избыточного давления и скоростного напора воздуха. Ввиду небольших размеров тела человека ударная волна почти мгновенно охватывает человека и подвергает его сильному сжатию. Процесс сжатия продолжается со снижающейся интен­сивностью в течение всего периода фазы сжатия, т. е. в течение не­скольких секунд. Мгновенное повышение давления в момент при­хода ударной волны воспринимается живым организмом как рез­кий удар. В то же самое время скоростной напор создает значитель­ное лобовое давление, которое может привести к перемещению тела в пространстве.

Косвенные поражения люди и животные могут получить в ре­зультате ударов обломками разрушенных зданий и сооружений или в результате ударов летящих с большой скоростью осколков стек­ла, шлака, камней, дерева и других предметов. Например, при из­быточном давлении во фронте ударной волны 35 кПа плотность ле­тящих осколков достигает 3500 шт. на квадратный метр при средней скорости перемещения этих предметов 50 м/с.

Характер и степень поражения незащищенных людей и живот­ных зависят от мощности и вида взрыва, расстояния, метеоусловий, а также от места нахождения (в здании, на открытой местности) и положения (лежа, сидя, стоя) человека.

Воздействие воздушной ударной волны на незащищенных людей характеризуется легкими, средними, тяжелыми и крайне тяжелыми травмами.

Разрушение постройки 20-30 кПа.

 

 

9. Световое излучение ядерного взрыва. Световой импульс, длительность действия светового из лучения, степени ожогов людей, способы защиты от светового излучения.

Световое излучение. По своей природе световое излучение ядер­ного взрыва — поток лучистой энергии оптического диапазона (близок к спектру солнечного излучения). Источник светового из­лучения — светящаяся область взрыва, состоящая из нагретых до высокой температуры веществ ядерного боеприпаса, воздуха

-и грунта (при наземном взрыве). Температура светящейся облас­ти в течение некоторого времени сравнима с температурой по­верхности солнца (максимум 8000—10000 и минимум 1800°С). Размеры светящейся области и ее температура быстро изменяются во времени. Продолжительность светового излучения зависит от мощности и вида взрыва и может продолжаться до десятков секунд. При воздушном взрыве ядерного боеприпаса мощностью 20 кт свето­вое излучение продолжается 3 с, термоядерного заряда 1 Мт—10 с.

Поражающее действие светового излучения характеризуется све­товым импульсом. Световой импульс— количество энергии прямого светового излучения ядерного взрыва, падающей за все время излуче­ния на единицу площади неподвижной и неэкранируемой поверхно-.сти, расположенной перпендикулярно направлению излучения. Единица светового импульса — джоуль на квадратный метр (Дж/м2)

-или калория на квадратный сантиметр (кал/см2). 1 Дж/м2=23,9x X 10-6 кал/см2; 1 кДж/м2=О.0239 кал/см2; 1 кал/см2=40 кДж/м2.

Световое излучение ядерного взрыва при непосредственном воздей­ствии вызывает ожоги открытых участков тела, временное ослепле­ние или ожоги сетчатки глаз. Возможны вторичные ожоги, возни­кающие от пламени горящих зданий, сооружений, растительности, воспламенившейся или тлеющей одежды.

Независимо от причин возникновения, ожоги разделяют по тя­жести поражения организма.

Ожоги первой степени выражаются в болезненности, покрасне­нии и припухлости кожи. Они не представляют серьезной опасности и быстро вылечиваются без каких-либо последствий. При ожогах второй степени образуются пузыри, заполненные прозрачной бел­ковой жидкостью; при поражении значительных участков кожи человек может потерять на некоторое время трудоспособность и нуждается в специальном лечении. Пострадавшие с ожогами пер­вой и второй степеней, достигающими даже 50—60 % поверхности кожи, обычно выздоравливают. Ожоги третьей степени характери­зуются омертвлением кожи с частичным поражением росткового слоя. Ожоги четвертой степени: омертвление кожи и более глубо­ких слоев тканей (подкожной клетчатки, мышц, сухожилий костей). Поражение ожогами третьей и четвертой степени значительной части кожного покрова может привести к смертельному исходу. Степени ожогов и световые импульсы, при которых они возникают, приведе­ны в табл. 4.

Одежда людей и шерстяной покров животных защищает кожу от ожогов. Поэтому ожоги чаще бывают у людей на открытых частях. тела, а у животных — на участках тела, покрытых коротким и ред­ким волосом. Импульсы светового излучения, необходимые для

поражения кожи животных, покрытой волосяным покровом, более высокие.

Степень ожогов световым излучением закрытых участков кожи зависит от характера одежды, ее цвета, плотности и толщины. Люди, одетые в свободную одежду светлых тонов, одежду из шерстяных тканей, обычно меньше поражены световым излучением, чем люди, одетые в плотно прилегающую одежду темного цвета или прозрач­ную, особенно одежду из синтетических материалов.

Поражение глаз человека может быть в виде временного ослеп­ления — под влиянием яркой световой вспышки. В солнечный день ослепление длится 2—5 мин, а ночью, когда зрачок сильно расши­рен и через него проходит больше света,— до 30 мин и более. Более тяжелое (необратимое) поражение — ожог глазного дна — возни­кает в том случае, когда человек или животное фиксирует свой взгляд на вспышке взрыва.

Тепловое воздействие на материалы. Энер­гия светового импульса, падая на поверхность предмета, частично отражается его поверхностью, поглощается им и проходит через него, если предмет прозрачный. Поэтому характер (степень) пора­жения элементов объекта зависит как от светового импульса и вре­мени его действия, так и от плотности, теплоемкости, теплопровод­ности, толщины, цвета, характера обработки материалов, распо­ложения поверхности к падающему световому излучению,— всего, что будет определять степень поглощения световой энергии ядерно­го взрыва.

Пожары на объектах и в населенных пунктах возникают от светового излучения и вторичных фак­торов, вызванных воздействием ударной волны. Наименьшее из­быточное давление, при котором могут возникнуть пожары от вто­ричных причин,— 10 кПа (0,1 кгс/см2). Возгорание материалов мо­жет наблюдаться при световых импульсах 125 кДж (3 кал/см2) и бо­лее. Эти импульсы светового излучения в ясный солнечный день наблюдаются на значительно больших расстояниях, чем избыточное давление во фронте ударной волны 10 кПа. Так, при воздушном ядерном взрыве мощностью 1 Мт в ясную солнечную погоду дере­вянные строения могут воспламеняться на расстоянии до 20 км от центра взрыва, автотранспорт — до 18 км, сухая трава, сухие листья и гнилая древесина в лесу — до 17 км. Тогда, как действие избыточного давления 10 кПа для данного взрыва отмечается на рас­стоянии 11 км. Большое влияние на возникновение пожаров оказы­вает наличие горючих материалов на территории объекта и внутри зданий и сооружений. Световые лучи на близких расстояниях от центра взрыва падают под большим углом к поверхности земли; на больших расстояниях — практически параллельно поверхности земли. В этом случае световое излучение проникает через застек­ленные проемы в помещения и может воспламенять горючие мате­риалы, изделия и оборудование в цехах предприятий (большинство' сортов хозяйственных тканей, резины и резиновых изделий заго­рается при световом импульсе 250—420 кДж/м2 (6—10 кал/см2).

 

 

10. Проникающая радиация: источники, понятие дозы облучения, способы защиты от проникающей радиации.

Проникающая радиация. Это один из поражающих факторов ядерного оружия, представляющий собой гамма-излучение и поток нейтронов, испускаемых в окружающую среду из зоны ядерного взрыва. Кроме гамма-излучения и потока нейтронов выделяются ионизирующие излучения в виде альфа- и бета-частиц, имеющих малую длину свободного пробега, вследствие чего их воздействием на людей и материалы пренебрегают. Время действия проникаю­щей радиации не превышает 10—15 с с момента взрыва.

Основные параметры, характеризующие ионизирующие излуче­ния,— доза и мощность дозы излучения, поток и плотность потока частиц.

Ионизирующая способность гамма-лучей характеризуется экс­позиционной дозой излучения. Единицей экспозиционной дозы гам­ма-излучения является кулон на килограмм (Кл/кг). Согласно стан­дарту, кулон на килограмм — экспозиционная доза рентгеновского и гамма-излучений, при которой сопряженная корпускулярная эмиссия на 1 кг сухого атмосферного воздуха производит в воздухе ионы, несущие заряд в один кулон электричества каждого знака. В практике в качестве единицы экспозиционной дозы применяют несистемную единицу рентген (Р). Рентген — это такая доза (количество энергии) гамма-излучения, при поглощении которой в 1 см3 сухого воздуха (при температуре 0 °С и давлении 760 мм рт. ст.) образуется 2,083 миллиарда пар ионов,

Единица мощности экспозиционной дозы — ампер на килограмм (А/кг), рентген в секунду (Р/с) и рентген в час (Р/ч). Ампер на кило­грамм равен мощности экспозиционной дозы, при которой за время, равное одной секунде, сухому атмоссрерному воздуху передается экспозиционная доза кулон на килограмм:

1 Р/с=2,58-10-4 А/кг; 1 А/кг=3876 Р/с или 1 А/кг»3900 Р/с= =14-10е Р/ч; 1 Р/ч=7,167-Ю"8 А/кг. Процесс ионизации атомов нейтронами отличен от процесса ионизации гамма-лучами. Поток нейтронов измеряется числом нейтронов, приходящихся на квад­ратный метр поверхности,— нейтрон /м2. Плотность потока -— нейтрон/(м2хс).

Степень тяжести лучевого поражения главным образом зависит от поглощенной дозы. Для измерения поглощенной дозы любого вида ионизирующего излучения Международной системой измере­ний «СИ» установлена единица грэй (Гр); в практике применяется внесистемная единица — рад. Грэй равен поглощенной дозе излучения, соответствующей энергии 1 Дж ионизирующего излучения лю­бого вида, переданной облучаемому веществу массой 1 кг. Для:

типичного ядерного взрыва один рад соответствует потоку нейтро­нов (с энергией, превышающей 200 эВ) порядка 5-Ю14 нейтрон /м2 [5]: 1 Гр=1 Дж/кг=100 рад=10000 эрг/г.

Распространяясь в среде, гамма-излучение и нейтроны ионизи­руют ее атомы и изменяют физическую структуру веществ. При ионизации атомы и молекулы клеток живой ткани за счет наруше­ния химических связей и распада жизненно важных веществ по­гибают или теряют способность к дальнейшей жизнедеятель­ности.

При воздействии проникающей радиации у людей и животных может возникнуть лучевая болезнь. Степень поражения зависит от экспозиционной дозы излучения, времени, в течение которого эта доза получена, площади облучения тела, общего состояния организма. Экспозиционная доза излучения до 50—80 Р (0,013—0,02 Кл/кг), полученная за первые четверо суток, не вызывает поражения и потери трудоспособности у людей, за исключением некоторых изменений крови. Экспозиционная доза в 200—300 Р, полученная за короткий промежуток времени (до четырех суток), может вызвать у людей средние радиационные по­ражения, но такая же доза, полученная в течение нескольких меся­цев, не вызывает заболевания. Здоровый организм человека спосо­бен за это время частично вырабатывать новые клетки взамен по­гибших при облучении [6, 7].

При установлении допустимых доз излучения учитывают, что облучение может быть однократным или многократным. Однократ­ным считается облучение, полученное за первые четверо суток. Облучение, полученное за время, превышающее четверо суток, является многократным. При однократном облучении организма человека в зависимости от полученной экспозиционной дозы раз­личают четыре степени лучевой болезни.

Лучевая болезнь первой (легкой) степени возникает при общей экспозиционной дозе излучения 100—200 Р (0,026—0,05 Кл/кг). Скрытый период может продолжаться две-три недели, после чего появляются недомогание, общая слабость, чувство тяжести в го­лове, стеснение в груди, повышение потливости, может наблюдаться периодическое повышение температуры. В крови уменьшается со­держание лейкоцитов. Лучевая болезнь первой степени излечима.

Лучевая болезнь второй (средней) степени возникает при общей экспозиционной дозе излучения 200—400 Р (0,05—0,1 Кл/кг). Скры­тый период длится около недели. Лучевая болезнь проявляется в бо­лее тяжелом недомогании, расстройстве функций нервной системы, головных болях, головокружениях, вначале часто бывает рвота, понос, возможно повышение температуры тела; количество лейко­цитов в крови, особенно лимфоцитов, уменьшается более чем на­половину. При активном лечении выздоровление наступает через 1,5—2 мес. Возможны смертельные исходы—до 20 %.

Лучевая болезнь третьей (тяжелой) степени возникает при об­щей экспозиционной дозе 400—600 Р (0,1—0,15 Кл/кг). Скрытый период — до нескольких часов. Отмечают тяжелое общее состоя­ние, сильные головные боли, рвоту, понос с кровянистым стулом, иногда потерю сознания или резкое возбуждение, кровоизлияния в слизистые оболочки и кожу, некроз слизистых оболочек в области десен. Количество лейкоцитов, а затем эритроцитов и тромбоцитов резко уменьшается. Ввиду ослабления защитных сил организма появляются различные инфекционные осложнения. Без лечения болезнь в 20—70 % случаев заканчивается смертью, чаще от ин­фекционных осложнений или от кровотечений.

При облучении экспозиционной дозой более 600 Р (0,15 Кл/кг) развивается крайне тяжелая четвертая степень лучевой болезни, которая без лечения обычно заканчивается смертью в течение двух недель.

При взрывах ядерных боеприпасов средней и большой мощности зоны поражения проникающей радиации несколько меньше зон поражения ударной волной и световым излучением. Для боеприпа­сов малой мощности, наоборот, зоны поражения проникающей ра­диации превосходят зоны поражения ударной волной и световым излучением. Ориентировочные радиусы зон поражения для различ­ных экспозиционных доз гамма-излучений и мощностей взрывов ядерных боеприпасов в приземном слое приведены в табл. 5.

Радиационные повреждения. При воздушных (приземных) и наземных ядерных взрывах плотности потоков (дозы) проникающей радиации на тех расстояниях, где ударная волна выводит из строя здания, сооружения, оборудование и другие эле­менты производства, в большинстве случаев для объектов являются безопасными. Но с увеличением высоты взрыва все большее зна­чение в поражении объектов приобретает проникающая радиация. При взрывах на больших высотах и в космосе основным поражаю­щим фактором становится импульс проникающей радиации.

Проникающая радиация может вызывать обратимые и необрати­мые изменения в материалах, элементах радиотехнической, электро­технической, оптической и другой аппаратуры. В космическом про­странстве эти повреждения могут наблюдаться на расстояниях де­сятков и сотен километров от центра взрывов мегатонных боепри­пасов.

Необратимые изменения в материалах вызываются нарушения­ми структуры кристаллической решетки вещества вследствие воз­никновения дефектов (в неорганических и полупроводниковых ма­териалах), а также в результате прохождения различных физико-химических процессов. Такими процессами являются: радиацион­ный нагрев, происходящий вследствие преобразования поглощен­ной энергии проникающей радиации в тепловую; окислительные химические реакции, приводящие к окислению контактов и по­верхностей электродов; деструкция и «сшивание» молекул в поли­мерных материалах, приводящие к изменению физико-механиче­ских и электрических параметров; газовыделения и образование пылеобразных продуктов, которые могут вызвать вторичные фак­торы воздействия (взрывы в замкнутых объемах, запыление отдель­ных деталей приборов и т. д.).

Обратимые изменения, как правило, являются следствием иони­зации материалов и окружающей среды. Они проявляются в увели­чении концентрации носителей тока, что приводит к возрастанию утечки тока, снижению сопротивления в изоляционных, полупро­водниковых, проводящих материалах и газовых промежутках. Об­ратимые изменения в материалах, элементах и аппаратуре в целом могут возникать при мощностях экспозиционных доз 1000 Р/с. Проводимость воздушных промежутков и диэлектрических мате­риалов начинает существенно увеличиваться при мощностях доз 10 000 Р/с и более.

Проникающая радиация, проходя через различные среды (мате­риалы), ослабляется. Степень ослабления зависит от свойств мате­риалов и толщины защитного слоя. Нейтроны ослабляются в ос­новном за счет столкновения с ядрами атомов. Вероятность процес­сов взаимодействия нейтронов с ядрами количественно характери­зуется эффективным сечением взаимодействия и зависит главным образом от энергии нейтронов и природы ядер мишени.

Энергия гамма-квантов при прохождении их через вещества рас­ходуется в основном на взаимодействие с электронами атомов. По­этому степень их ослабления практически обратно пропорциональна плотности материала.

Защитные свойства материала характеризу­ются слоем половинного ослабления, при прохождении которого интенсивность гамма-лучей или нейтронов уменьшается в два раза (табл. 22).

Если защитная преграда состоит из нескольких слоев различ­ных материалов, например грунта, бетона и дерева, то подсчитывают степень ослабления для каждого слоя в отдельности и результаты перемножают:

Защитные сооружения ГО надежно обеспечивают защиту людей от проникающей радиации. Расчет защитных свойств этих сооруже­ний производится по гамма-излучению, так как доза гамма-излуче­ния значительно выше дозы нейтронного излучения, а слои поло­винного ослабления для строительных материалов приблизительно одинаковы.

На объектах, оснащенных электронной, электротехнической и оптической аппаратурой, следует предусматривать меры по защите этой аппаратуры от воздействия проникающей радиации. Повыше­ние радиационной стойкости аппаратуры может быть достигнуто путем [5]:

применения радиационностойких материалов и элементов;

создания схем малокритичных к изменениям электрических параметров элементов, компенсирующих и отводящих дополнитель­ные токи, выключающих отдельные блоки и элементы на период воздействия ионизирующих излучений;

увеличения расстояний между элементами, нахо­дящимися под электричес­кой нагрузкой, снижения рабочих напряжений на них;

регулирования тепло­вых, электрических и дру­гих нагрузок;

применения различного рода заливок, не проводя­щих ток при облучении;

размещения на объек­тах специальных защит­ных экранов или использования элементов конструкций объекта для ослабления действий ионизирующих излучений на менее радиационно-стойкие детали.

 

 

11. Радиоактивное заражение источники, поражающее действие на людей, способы защиты от радиоактивного заражения.

Радиоактивное заражение возникает в результате выпадения радиоактивных веществ (РВ) из облака ядерного взрыва. Основные источники радиоактивности при ядерных взрывах: продукты деле­ния веществ, составляющих ядерное горючее (200 радиоактивных изотопов 36 химических элементов); наведенная активность, воз­никающая в результате воздействия потока нейтронов ядерного взрыва на некоторые химические элементы, входящие в состав грун­та (натрий, кремний и др.); некоторая часть ядерного горючего, которая не участвует в реакции деления и попадает в виде мельчай­ших частиц в продукты взрыва. Излучение радиоактивных веществ состоит из трех видов лучей: альфа, бета и гамма. Наибольшей проникающей способностью обладают гамма-лучи (в воздухе они проходят путь в несколько сот метров), меньшей — бета-частицы (несколько метров) и незначительной — альфа-частицы (несколько сантиметров). Поэтому основную опасность для людей при радио­активном заражении местности представляют гамма- и бета-излуче­ния.

Радиоактивное заражение имеет ряд особенностей, отличающих его от других поражающих факторов ядерного взрывав К ним отно­сятся: большая площадь поражения — тысячи и десятки тысяч квадратных километров; длительность сохранения поражающего действия — дни, недели, а иногда и месяцы; трудности обнаруже­ния радиоактивных веществ, не имеющих цвета, запаха и других внешних признаков.

Зоны радиоактивного заражения образуются в районе ядерного взрыва и на следе радиоактивного облака. Наи­большая зараженность местности РВ будет при наземных и подзем­ных (произведенных на небольшой глубине), надводных и подвод­ных ядерных взрывах. Зараженность местности РВ может также возникнуть в результате применения противником радиологическо­го оружия.

При наземном (подземном) ядерном взрыве огненный шар ка­сается поверхности земли. Окружающая среда сильно нагревается, значительная часть грунта и скальных пород испаряется и захваты­вается огненным шаром. Радиоактивные вещества оседают на рас­плавленных частицах грунта. В результате образуется мощное об­лако, состоящее из огромного количества радиоактивных и неактив­ных оплавленных частиц, размеры которых колеблются от нескольких микрон до нескольких миллиметров. В течение 7—10 мин радио­активное облако поднимается и достигает своей максимальной вы­соты, стабилизируется, приобретая характерную грибовидную фор­му, и под действием воздушных потоков перемещается с определен­ной скоростью и в определенном направлении. Большая часть радио­активных осадков, которая вызывает сильное заражение местности, выпадает из облака в течение 10—20 ч после ядерного взрыва.

При выпадении РВ из облака ядерного взрыва происходит за­ражение поверхности земли, воздуха, водоисточников, материаль­ных ценностей и т. п.

Масштабы и степень радиоактивного заражения местности за­висят от мощности и вида взрыва, особенностей конструкции бое-припаса, характера поверхности, над которой (на которой) произ­веден взрыв, метеорологических условий и времени, прошедшего после взрыва.

Форма следа радиоактивного облака зависит от направления и скорости среднего ветра. На равнинной местности при неменяющем­ся направлении и скорости ветра радиоактивный след имеет форму вытянутого эллипса (рис. 12). Наиболее высокая степень заражения наблюдается на участках следа, расположенных недалеко от центра взрыва и на оси следа. Здесь выпадают более крупные оплавленные частицы радиоактивной пыли. Наименьшая степень заражения наблюдается на границах зон заражения и на участках, наиболее удаленных от центра наземного ядерного взрыва.

Степень радиоактивного заражения местности характеризуется уровнем радиации на определенное время после взрыва и экспози­ционной дозой радиации (гамма-излучения), полученной за время от начала заражения до времени полного распада радиоактивных веществ.

Уровнем радиации называют мощность экспозицион­ной дозы (Р/ч) на высоте 0,7—1 м над зараженной поверхностью. Заражение техники, предметов, одежды, продовольствия, воды, а также кожных покровов людей и животных измеряют в милли­рентгенах в час. 1 мР/ч==Ь 10~3 Р/ч. Местность считается заражен­ной радиоактивными веществами при уровне радиации 0,5 Р/ч и выше.

Границы зон на. радиоактивно-зараженной местности (см. рис. 12) определяют по значениям экспозиционных доз гамма-излучения Z)„, получаемых за время от 1 ч после взрыва до полного распада радиоактивных ве­ществ. Для удобства решения задач по оценке радиационной обста­новки границы зон на радиоактивно-зараженной местности также принято характеризовать уровнями радиации на один (Ро) и десять часов после взрыва.

Зона умеренного заражения (зона А). Экспозиционная доза излу­чения за время полного распада РВ (DJ колеблется от 40 до 4000 Р (0,01—0,1 Кл/кг). Уровень радиации на внешней границе зоны через 1 ч после взрыва — 8 Р/ч, через 10ч — 0,5 Р/ч. В зоне А работы на объектах, как правило, не прекращаются. Работы на открытой местности, расположенной в середине зоны или у ее внутренней гра­ницы, должны быть прекращены на несколько часов.

Зона сильного заражения (зона Б). Экспозиционная доза излуче­ния за время полного распада РВ колеблется от 400 до 1200 Р (0,1— 0,3 Кл/кг). Уровень радиации на внешней границе через 1 ч после взрыва составляет 80 Р/ч, через 10ч — 5 Р/ч. В зоне Б работы на объектах прекращаются сроком до 1 суток, рабочие и служащие укрываются в защитных сооружениях ГО, подвалах или других укрытиях.

Зона опасного заражения (зона В). На внешней границе зоны экспозиционная доза гамма-излучения до полного распада РВ со­ставляет 1200 Р (0,3 Кл/кг), на внутренней границе — 4000 Р (1 Кл/кг); уровень радиации на внешней границе через 1 ч — 240 Р/ч, через 10ч — 15 Р/ч. В этой зоне работы на объектах прекра­щаются от 1 до 3—4 суток, рабочие и служащие укрываются в за­щитных сооружениях ГО.

Зона чрезвычайно опасного заражения (зона Г). На внешней границе зоны экспозиционная доза гамма-излучения до полного распада РВ составляет 4000 Р (1 Кл/кг); уровень радиации через 1ч — 800 Р/ч, через 10 ч — 50 Р/ч. В зоне Г работы на объектах прекращаются на четверо и более суток, рабочие и служащие укры­ваются в убежищах. По истечении указанного срока уровень ра­диации на территории объекта спадает до значений, обеспечивающих безопасную деятельность рабочих и служащих в производственных помещениях. Уровни радиации по границам зон радиоактивного заражения местности в различное время после взрыва приведены в табл. 6.

Действие продуктов ядерного взрыва на людей, животных и растения. На следе радиоактив­ного облака поражающим действием обладают: а) гамма-излучения, вызывающие общее внешнее облучение; б) бета-частицы, вызываю­щие при внешнем воздействии радиационное поражение кожи, а при попадании бета-частиц внутрь организма — поражение внутренних органов; в) альфа-частицы, представляющие опасность при попада­нии внутрь организма.

Как и проникающая радиация в районе ядерного взрыва, общее внешнее гамма-облучение на радиоактивнозараженной местности вызывает у людей и животных лучевую болезнь. Дозы излучения,

вызывающие заболевания, такие же. как и от проникающей радиа­ции.

При внешнем воздействии бета-частиц у людей наиболее часто

отмечаются поражения кожи на руках, в области шеи, на голове;

у животных — на спине, а также на морде при соприкосновении ее с радиоактивно зараженной травой. Различают кожные поражения тяжелой (появление незаживающих язв), средней (образование пу­зырей) и легкой (посинение и зуд кожи) степени. Внутреннее поражение людей и животных РВ может произойти при попадании их внутрь организма главным образом с пищей и кормом. С воздухом и водой РВ в организм, по-видимому, будут попадать в таких количествах, которые не вызовут острого лучевого: поражения с потерей трудоспособности (боеспособ­ности) людей или продук­тивности животных. Вса­сывающиеся радиоактивные продукты ядерного взрыва распределяются в организ­ме крайне неравномерно. Особенно много концентри­руется их в щитовидной железе (в 1000—10 000 раз больше, чем в других тка­нях) и печени (в 10—100 раз больше, чем в других органах). В связи с этим указанные органы подвергаются облучению в очень больших дозах, приводящему либо к разрушению ткани, либо к развитию опухолей (щитовидная железа), либо к серьезному на­рушению функций (печень и др.).

Радиоактивная пыль заражает почву и растения. В зависимости от размеров частиц на поверхности растений может задерживаться от 8 до 25 % выпавшей на землю радиоактивной пыли. Возможно и частичное всасывание радиоактивных веществ внутрь растений. Лучевое поражение у растений проявляется в торможении роста и замедлении развития, снижении урожая, понижении репродуктив­ного качества семян, клубней, корнеплодов. При больших дозах излучения возможна гибель растений, проявляющаяся в 'остановке роста и усыхании.

Основным способом защиты населения следует считать изоля­цию людей от внешнего воздействия радиоактивных излучений, а также исключение условий, при которых возможно попадание радиоактивных веществ внутрь организма человека вместе с возду­хом и пищей.

Наиболее целесообразный способ защиты от радиоактивных ве­ществ и их излучений — убежища и противорадиационные укры­тия, которые надежно защищают от радиоактивной пыли и обеспечивают ослабление гамма-излучения радиоактивного заражения в сотни — тысячи раз. Стены и перекрытия промышленных и жи­лых зданий, особенно подвальных и цокольных помещений, также ослабляет действие гамма-лучей. Коэффициент защиты стен зданий и сооружений рассчитывается, как и от гамма-излучения проникаю­щей радиации, но формуле (11). Толщины слоев половинного ослаб­ления по гамма-излучению радиоактивного заражения приведены в табл. 22 или могут быть вычислены по плотности материала: с?пол= =13/р, где 13 см—слой воды, ослабляющий гамма-лучи радиоак­тивного заражения в два раза.

Для защиты людей от попадания радиоактивных веществ в орга­ны дыхания и на кожу при работе в условиях радиоактивного за­ражения применяют средства индивидуальной защиты. При выходе из зоны радиоактивного заражения необходимо пройти санитарную Обработку, т. е. удалить РВ, попавшие на кожу, и провести дез­активацию одежды.

Таким образом, радиоактивное заражение местности, хотя и представляет чрезвычайно большую опасность для людей, но если своевременно принять меры по защите, то можно полностью обес­печить безопасность людей и их постоянную работоспособность. В этих целях мероприятия по гражданской обороне в условиях радиоактивного заражения местности проводят при постоянном контроле за облучением всех работающих, который организует штаб гражданской обороны и служба противорадиационной и про­тивохимической защиты ГО объекта.

 

 

12. Электромагнитный импульс ядерного взрывах, физическая сущность, поражающее действие, способ защиты.

Электромагнитный импульс. При взаимодействии мгновенного и захватного гамма-излучений с атомами и молекулами среды по­следним сообщаются импульсы энергии. Основная часть энергии "расходуется на сообщение поступательного движения электронам - и ионам, образовавшимся в результате ионизации. Первичные (быстрые) электроны движутся в радиальном направлении от центра взрыва и образуют радиальные электрические токи и поля, быстро нарастающие по времени. Обладая большой энергией, первичные электроны производят дальнейшую ионизацию, которая также при­водит к образованию полей и токов. Возникающие кратковремен­ные электрические и магнитные поля и представляют собой электромагнитный импульс ядерного взрыва (ЭМИ),

ЭМИ наземного ядерного взрыва характеризуется амплитудой напряженности поля и формой импульса изменения поля с течением времени. Форма импульса показана на рис. 11, где на оси ординат дано отношение напряженности электрического поля для опреде­ленного времени после взрыва к максимальному импульсу, на оси абсцисс — время, прошедшее после взрыва. Это одиночный одно­полярный импульс с очень крутым передним фронтом, длительность которого определяется длительностью мгновенного гамма импульса и составляет несколько сотых долей микросекунды, и спадающий подобно импульсу от молниевого разряда по экспоненциальному закону в течение нескольких десятков миллисекунд. Диапазон частот ЭМИ до 100 Мгц, но в основном его энергия распределена около средней частоты (10—15 кгц).

Поскольку амплитуда ЭМИ быстро уменьшается с увеличением расстояния, его поражающее действие — несколько километров от центра (эпицентра) взрыва крупного калибра. Так, при наземном взрыве мощностью 1 Мт вертикальная составляющая электрического поля ЭМИ на расстоянии 4 км — 3 кВ/м, на расстоянии 3 км — 6 кВ/м и 2 км — 13 кВ/м.

ЭМИ непосредственного действия на человека не оказывает. Приемники энергии ЭМИ — проводящие электрический ток тела:

все воздушные и подземные линии связи, линии управления, сигна­лизации, электропередачи, металлические мачты и опоры, воздуш­ные и подземные антенные устройства, наземные и подземные трубо­проводы, металлические крыши и другие конструкции, изготовлен­ные из металла. В момент взрыва в них На доли секунды возникает импульс электрического тока и появляется разность потенциала относительно земли. Под действием этих напряжений может про­исходить: пробой изоляции кабелей, повреждение входных элемен­тов аппаратуры, подключенной к антеннам, воздушным и подзем­ным линиям (пробой трансформаторов связи, выход из строя разряд­ников, предохранителей, порча полупроводниковых приборов и т. д.), а также выгорание плавких вставок, включенных в линии для защиты аппаратуры. Высокие электрические потенциалы относи­тельно земли, возникающие на экранах, жилах кабелей, антенно-фидерных линиях и проводных линиях связи могут представлять опасность для лиц, обслуживающих аппаратуру.

Наибольшую опасность ЭМИ представляет для аппаратуры не­оборудованной специальной защитой, даже если она находится в особо прочных сооружениях, способных выдерживать большие механические нагрузки от действия ударной волны ядерного взрыва. ЭМИ для такой аппаратуры является главным поражающим факто­ром.

Линии электропередач и их оборудование, рассчитанные на на­пряжение десятков — сотен киловольт, являются устойчивыми к воздействию электромагнитного импульса.

Необходимо также учитывать одновременность воздействия им­пульса мгновенного гамма-излучения и ЭМИ: под действием перво­го — увеличивается проводимость материалов, а под действием вто­рого — наводятся дополнительные электрические токи. Кроме того, следует учитывать их одновременное воздействие на все системы, находящиеся в районе взрыва.

На кабельных и воздушных линиях, попавших в зону мощных импульсов электромагнитного излучения, возникают (наводятся) высокие электрические напряжения. Наведенное напряжение мо­жет вызывать повреждения входных цепей аппаратуры на довольно удаленных участках этих линий.

В зависимости от характера воздействия ЭМИ на линии связи и подключенную к ним аппаратуру могут быть рекомендованы сле­дующие способы защиты:

применение двухпроводных симметричных линий связи, хорошо изолированных между собой и от земли; исключение применения однопроводных наружных линий свя­зи; экранирование подземных кабелей медной, алюминиевой, свин цовой оболочкой; электромагнитное экранирование блоков и узлов аппаратуры; использование различного рода защитных входных устройств и грозозащитных средств.

 

13. Понятие химического оружия, отравляющие вещества, токсичность. Сравнительная характеристика отравляющих веществ по токсичности. Понятие токсическая доза.

Основа химического оружия — отравляющие вещества (0В), представляющие собой ядовитые (токсичные) соединения, приме­няемые для снаряжения химических боеприпасов. Они предназна­чаются для поражения незащищенных людей, животных и способ­ны заражать воздух, продовольствие, корма, воду, местность и пред­меты, расположенные на ней.

Основные пути проникновения 0В: через дыхательный аппарат (ингаляция), кожные покровы, желудочно-кишечный тракт и кро­вяной поток при ранениях зараженными осколками или специаль­ными поражающими элементами химических боеприпасов. Крите­рии боевой эффективности 0В: токсичность, быстродействие (время от момента контакта с 0В до проявления эффекта), стойкость.

Токсичность отравляющих веществ — это способность 0В вы­зывать поражения при попадании в организм в определенных до­зах. В качестве количественной характеристики поражающего действия 0В и других токсичных для человека и ж

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...