Вычисление сингулярного разложения
Применение сингулярной матрицы в химии (Реферат)
О Г Л А В Л Е Н И Е Введение. 3 Глава 1. Общие сведения о сингулярном разложении и сингулярных матрицах 4 1.1. Ортогональное разложение посредством сингулярного разложения. 4 1.2. Вычисление сингулярного разложения. 5 Глава 2. Применение сингулярных матриц при многомерном анализе химических данных факторными методами. 7 2.1. Общие сведения о факторных методах. 7 2.2. Операции с матрицами и многомерный анализ данных. 9 2.3. Свойства сингулярной матрицы.. 10 Заключение. 12 Список используемой литературы.. 16
Введение
Как известно, химия часто оказывается на перекрестке разных дисциплин. Для химика всегда есть большой соблазн в том, чтобы заняться какой-то чрезвычайно узкой областью, где он останется защищенным от всех превратностей, наслаждаясь удобством положения единственного в своем роде специалиста. Чтобы постоянно быть в курсе дела и в готовности встретить любую новую ситуацию, химику требуется быть знакомым с огромным объемом информации, необходимой не только для движения вперед, но и просто для сохранения своего положения. При написании данного реферата была использована следующая литература, содержащая информацию о сингулярных матрицах и применении их в химии: · книга «ЭВМ помогает химии» (пер. с англ) под ред. Г. Вернена, М. Шанона, в которой рассмотрено применение ЭВМ в различных областях химии: синтез органических соединений, кристаллография, масс-спектрометрия и т. д. · книга Ч.Лоусона и Р.Хенсона «Численное решение задач метода наименьших квадратов» (пер. с англ), посвященная изложению численных решений линейных задач метода наименьших квадратов.
Глава 1. Общие сведения о сингулярном разложении и сингулярных матрицах Ортогональное разложение посредством сингулярного разложения
В этом пункте данного реферата будет описано одно практически полезное ортогональное разложение т x n - матрицы А. Мы покажем здесь, что невырожденную подматрицу R матрицы A можно еще более упростить так, чтобы она стала невырожденной диагональной матрицей. Получаемое в результате разложение особенно полезно при анализе влияния ошибок входной информации на решение задачи НК. Это разложение тесно связано со спектральным разложением симметричных неотрицательно определенных матриц ATA и AAT.
Теорема (сингулярное разложение). Пусть А - m x n -матрица ранга k. Тогда существуют ортогональная m x m матрица U, ортогональная n x n -матрица V и диагональная m x n -матрица S) такие, что Матрицу S можно выбрать так, чтобы ее диагональные элементы составляли невозрастающую последовательность; все эти элементы неотрицательны и ровно k из них строго положительны. Диагональные элементы S называются сингулярными числами А. Доказательства данной теоремы приводить не имеет смысла во избежание нагромождения множества сложных математических выкладок, прямого отношения к теме, рассматриваемой в данном реферате, не имеющих. Ограничимся следующим численным примером, в котором дано сингулярное разложение матрицы А вида:
Вычисление сингулярного разложения Рассмотрим теперь построение сингулярного разложения т Х n - матрицы в предположении, что т > п. Сингулярное разложение будет вычислено в два этапа. На первом этапе А преобразуется к верхней двухдиагональной матрице посредством последовательности (не более чем из n — 1) преобразований Хаусхолдера
где
Трансформирующая матрица выбирается так, чтобы аннулировать элементы i + 1,..., т столбца i; матрица Hi — так, чтобы аннулировав элементы i + 1,.... п строки / - 1.
Заметим, что Qn - это попросту единичная матрица. Она включена, чтобы упростить обозначения; Qn также будет единичной матрицей при от = я, но при т > п она, вообще говоря, отличается от единичной. Второй этап процесса состоит в применении специальным образом адаптированного QR-алгоритма к вычислению сингулярного разложения матрицы Здесь - ортогональные матрицы, a S диагональная.
Можно получить сингулярное разложение А: Сингулярное разложение матрицы В будет получено посредством следующего итерационного процесса: Здесь - ортогональные матрицы, а Bk - верхняя двухдиагональная матрица для всех k. Заметим, что диагональные элементы матрицы полученной непосредственно из этой итерационной процедуры, не являются в общем случае ни положительными, ни упорядоченными. Эти свойства обеспечиваются специальной последующей обработкой. Сама итерационная процедура представляет собой (QR-алгоритм Фрэнсиса, адаптированный Голубом и Райншем к задаче вычисления сингулярных чисел.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|