Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Система, «понимающая» естественный язык

 

Смоделировать понимание и обработку естественного языка – это не одно и то же. Так, мы можем (не понимая полностью или частично) манипулировать символами, повторить сказанное на чужом (и непонятном нам) языке и т.п. Все это, пусть огрубление, соответствует ситуации ОЕЯ без понимания. С другой стороны, сам факт того, что мы нечто понимаем, равносилен тому, что мы над выражением производим определенные лингвистические операции. Таким образом, понимание естественного языка – специальный случай ОЕЯ. Многие из построенных систем ОЕЯ не понимают естественного языка в том смысле, который разумно вкладывать в термин «понимание».

Прежде всего, не все такие системы обладают целенаправленностью: выработка собственных целей, планирование, воплощение стратегий в виде тех или иных тактических приемов, «прослеживание» результатов этих приемов и предсказание (предвидение) дальнейших результатов – все это пока еще не более чем проект хорошей системы ОЕЯ. Так, система SHRDLU обладает системой планирования, но цели в ней достигаются не посредством высказываний; и кроме того, эта система не в состоянии распознавать цели человека: в диалоге с ЭВМ именно человек обладает инициативой. Несколько более замаскировано отсутствие целенаправленности в системах ЭЛИЗА и ДОКТОР. Только сравнительно недавно целенаправленность и моделирование намерений вошли в круг интересов разработчиков ОЕЯ.

Другое временное упущение: понять новое высказывание в диалоге или в тексте – значит, кроме прочего, связать его с тем, что было сказано раньше. В системах «искусственного интеллекта» эта задача решается, в основном, опосредованно, в два шага:

1) сначала, на основании протокола анализа предшествующего диалога или текста, активируются «фреймы», или «скрипты» (т.е., неформально говоря, те схемы из базы знаний, в которые можно уложить поступившую новую информацию), а затем

2) новое, текущее сообщение сопоставляется с этими схемами (но не с предшествующими предложениями непосредственно).

В результате, в частности, упускается такая возможность, реально используемая на самом деле в общении между людьми, как «ловля на слове», непоследовательность в употреблении терминов и т.п.

Третье отличие состоит в слабой реализованности влияния контекста непосредственно на направление работы анализатора. Так, в большинство систем ОЕЯ имеется две отдельные подсистемы: а) анализатор («парзер») перерабатывает входной текст в некоторую промежуточную форму (на язык синтаксических деревьев – как в системах типа, на упрощенный естественный язык – как в работе или на язык понятийных примитивов – как у Шенка), а затем б) подсистема логического вывода строит репрезентацию для значения входного текста (посредством заполнения недостающих деталей в репрезентации, полученной на выходе из анализатора); тогда включаются те неупомянутые события, которые связывают в единое целое факты, упоминаемые в тексте. Часто представленные другие компоненты (система ответа на вопросы и система построения аннотации к статье) скорее демонстрируют достигнутость понимания, чем являются частью процесса понимания. Назначение промежуточного представления для значения текста всегда одно и то же: защитить систему логического вывода от «капризов» естественного языка. Однако эта направленность не выдержана последовательно: логический вывод всегда бывает при этом связан с дополнительным анализом – на основе теперь уже промежуточной репрезентации. Но на работе анализатора никак не сказывается (в названных системах) то, к каким выводам придет система логического вывода. Попытка восполнить это упущение сделана разработчиками системы FRUMP, где знания о мире отделены от чисто языковых сведений, не где, тем не менее, контекстная информация влияет на процесс анализа, В этой системе содержатся, среди прочего, два модуля: Предсказыватель (предсказывает ограничения на то, что может дальше появиться в тексте) и Выяснитель (верифицирует эти гипотезы Предсказывателя). Однако эта система находится в стадии проектирования.

Другой вид проблем: отношение между синтаксисом и семантикой в рамках анализа предложения. Имеем здесь, как минимум, три возможности:

1) при переходе от предложения к представлению его значения сначала полностью восстанавливается синтаксическая структура предложения; на втором же этапе эта структура переводится в семантическое представление;

2) между синтаксисом и семантикой нет никаких барьеров, семантическая структура получается прямо, исходя из текстового вида предложения;

3) построение частичных синтаксических репрезентаций перемежается установлением частичных же семантических репрезентаций (т.е. синтаксис и семантика различаются, не в анализа взаимодействуют не прямолинейным образом). Третье решение является компромиссным между первыми двумя; в особенности оно удовлетворяет противников последовательного анализа, которые считают, что при ОЕЯ необходимо допускать возможность той ситуации, когда различные типы информации и процедур вызываются более одного раза на различных этапах обработки входного выражения.

В обобщенном виде компромиссный подход может быть охарактеризован как «модульная концепция ОЕЯ». Одно из достоинств этого подхода – организационное упрощение: можно разделить всю задачу на несколько подзадач, которые поручаются разным исследователям или группам исследователей; получаемые же в результате «модули» работают во взаимодействии друг с другом, но не «вмешиваясь» во внутреннюю технику операций друг друга.

Несомненно, переработка естественного языка в целях создания лингвистического обеспечения искусственного интеллекта представляет собой процесс, сложность которого трудно переоценить. Попытки создать «естественный язык для искусственного интеллекта» предпринимаются снова и снова, так что представляется вполне возможным, что в ближайшем будущем появится система языка для искусственного разума, идентичная естественной.


Заключение

 

Последние 20 лет в центре внимания разработчиков искусственного интеллекта находится вопрос о моделировании той деятельности человека, результатом которой является речь.

Описание процессов получения, переработки, хранения и передачи информации затрудняется тем, что данные процессы происходят в мозге человека и недоступны для непосредственного исследования.

Высказывается мнение, что, изучая процесс обработки языка в мозге человека, исследователь мысленно прослеживает тот путь, который проходит этот человек, воспринимая и интерпретируя какой-либо текст.

Исследования процессов обработки языка непосредственно связаны с прикладными задачами. На их основе разрабатываются модели лингвистического обеспечения искусственного интеллекта.

В данной работе я не стала останавливаться на всех методиках анализа и обработки естественного языка, так как вопрос лингвистического обеспечения искусственного интеллекта весьма обширен. По той же причине в предложенном подходе были рассмотрены исключительно общие положения и некоторые примеры к ним. Был затронут только синтаксический подход, кроме которого существует также, например, морфологический и лексический.


Использованная литература:

 

1. Демьянков В.З. Основы теории интерпретации и ее приложения в вычислительной лингвистике, М.: Изд-во Моск. ун-та, 1985

2. Краткий словарь когнитивных терминов, М.: Филологический факультет МГУ им. М.В. Ломоносова, 1996

3. Мышление, когнитивные науки, искусственнный интеллек,т М.: Центральный совет философских (методологических) семинаров при Президиуме АН СССР, 1988.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...