Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Классификация эконометрических методов и моделей в принятия решений.

Методы учета неопределенностей принятия решений: вероятностные модели, теория нечеткости, интервальная математика.

Теория нечётких множеств (Заде) — это расширение классической теории множеств, используется в нечёткой логике. Впервые предложена Лотфи Заде в 60-х годах XX века.
В классической теории множеств принадлежность элементов множеству оценивается в бинарных терминах в соответствии с чётким условием — элемент либо принадлежит, либо нет данному множеству. Напротив, теория нечётких множеств разрешает градуированную оценку отношения принадлежности элементов множеству; то есть это отношение описывается при помощи функции принадлежности. Нечёткие множества — это расширение классической теории множеств, поскольку на некотором множестве функция принадлежности может действовать так же, как индикаторная функция, отображая все элементы либо в 1, либо в 0, как в классическом варианте.

Вероятностная модель - модель, которая в отличие от детерминированной модели содержит случайные элементы
Графическая вероятностная модель — это вероятностная модель, в которой в виде графа представлены зависимости между случайными величинами. Вершины графа соответствуют случайным переменным, а рёбра — непосредственным вероятностным взаимосвязям между случайными величинами. Графические модели широко используются в теории вероятностей, статистике (особенно в Байесовской статистике), а также в машинном обучении. Графические модели используются в задачах извлечения информации, распознавания речи, компьютерного зрения, декодирования кодов с малой плотностью проверок на чётность, обнаружения генов и диагностики болезней.

Интервальная арифметика — математическая структура, которая для вещественных интервалов определяет операции, аналогичные обычным арифметическим. Эту область математики называют также интервальным анализом или интервальными вычислениями. Данная математическая модель удобна для исследования различных прикладных объектов:
1) Величины, значения которых известны только приближённо, то есть определён конечный интервал, в котором эти значения содержатся.
2) Величины, значения которых в ходе вычислений искажены ошибками округления.
3) Случайные величины.

Эконометрические методы принятия решений. Основные понятия и определения.

Регрессионный анализ — статистический метод исследования зависимости между зависимой переменной и одной или несколькими независимыми переменными. При этом терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных, а не причинно-следственные отношения. Для адекватного описания сложных внутренне неоднородных экономических процессов, как правило, применяются системы эконометрических уравнений. В более простых случаях можно использовать и простые изолированные уравнения

Анализ временных рядов — совокупность математико-статистических методов анализа, предназначенных для выявления структуры временных рядов и для их прогноза. Выявление структуры временного ряда необходимо для того, чтобы построить математическую модель того явления, которое является источником анализируемого временного ряда. Прогноз будущих значений временного ряда используется при принятии решений. Прогнозирование также интересно тем, что оно рационализирует существование анализа временных рядов отдельно от экономической теории.

Как правило, при прогнозировании исходят из некоторой заданной параметрической модели. При этом используются стандартные методы параметрического оценивания (МНК, ММП, метод моментов). С другой стороны, достаточно разработаны методы непараметрического оценивания для нечетко заданных моделей.

Панельный анализ

Панельные данные представляют собой прослеженные во времени пространственные микроэкономические выборки, то есть они состоят из наблюдений одних и тех же экономических единиц, которые осуществляются в последовательные периоды времени. Панельные данные насчитывают три измерения: признаки — объекты — время. Их использование даёт ряд существенных преимуществ при оценке параметров регрессионных зависимостей, так как они позволяют проводить как анализ временных рядов, так и анализ пространственных выборок. С помощью подобных данных изучают бедность, безработицу, преступность, а также оценивают результативность государственных программ в области социальной политики.

Особенности использования эконометрических методов в принятии решений.

Специфические особенности экономических данных можно свести к 5 группам:

1. Измеряться могут только операционально определённые данные. При этом экономические измерения подвержены сил1ьному влиянию теоретических представлений о данных величинах.

2. Неэкспериментальный характер данных и короткие ряды наблюдений, которые ставят под сомнение адекватность полученных результатов.

3. Экономические данные, как правило, являются косвенными. При этом первичные измерения зачастую не носят никакого экономического характера.

4. Изменчивость единиц измерения.

5. Остро стоит проблема влияния инструмента измерения на сам объект изучения.

Основные проблемы использования эконометрических методов в принятии

Решений.

Весь арсенал используемых эконометрических и статистических методов можно распределить по трем потокам:

· высокие эконометрические (статистические) технологии;

· классические эконометрические (статистические) технологии;

· низкие эконометрические (статистические) технологии.

Основная современная проблема эконометрики состоит в обеспечении того, чтобы в конкретных эконометрических и статистических исследованиях использовались только технологии первых двух типов. При этом под классическими эконометрическими (статистическими) технологиями понимаем технологии почтенного возраста, сохранившие свое значение для современной статистической практики. Таковы метод наименьших квадратов, статистики Колмогорова, Смирнова, омега-квадрат, непараметрические коэффициенты корреляции Спирмена и Кендалла и многие другие эконометрические (статистические) процедуры.
Каковы возможные пути решения основной современной проблемы в области эконометрики?
В нашей стране по ряду причин эконометрика не была сформирована как самостоятельное направление научной и практической деятельности, в отличие, например, от Польши, не говоря уже об англосаксонских странах. В результате специалистов - эконометриков у нас на порядок меньше, чем в США и Великобритании (Американская статистическая ассоциация включает более 20000 членов). Бороться с конкретными невеждами - дело почти безнадежное. Единственный путь - обучение. Какие бы новые научные результаты ни были получены, если они остаются неизвестными студентам, то новое поколение исследователей и инженеров вынуждено осваивать их по одиночке, а то и переоткрывать. Несколько огрубляя, можно сказать: то, что попало в учебные курсы и соответствующие учебные пособия - то сохраняется, что не попало - то пропадает.
В России начинают развертываться эконометрические исследования и преподавание эконометрики. Среди технических вузов факультет "Инженерный бизнес и менеджмент" МГТУ им. Н.Э.Баумана имеет в настоящее время приоритет в преподавания эконометрики.
Мы полагаем, что экономисты, менеджеры и инженеры, прежде всего специалисты по контроллингу, должны быть вооружены современными средствами информационной поддержки, в том числе высокими статистическими технологиями и эконометрикой. Очевидно, преподавание должно идти впереди практического применения. Ведь как применять то, чего не знаешь?
Один раз - в 1990-1992 гг. мы уже обожглись на недооценке необходимости предварительной подготовки тех, для кого предназначены современные компьютерные средства. Всесоюзный центр статистических методов и информатики Центрального правления Всесоюзного экономического общества разработал систему диалоговых программных систем обеспечения качества продукции. Их созданием руководили ведущие специалисты страны. Но распространение программных продуктов шло на 1-2 порядка медленнее, чем ожидалось. Причина стала ясна не сразу. Как оказалось, работники предприятий просто не понимали возможностей разработанных систем, не знали, какие задачи можно решать с их помощью, какой экономический эффект они дадут. А не понимали и не знали потому, что в вузах никто их не учил статистическим методам управления качеством. Без такого систематического обучения нельзя обойтись - сложные концепции "на пальцах" за пять минут не объяснишь.
Есть положительный пример. В середине 1980-х годов в советской средней школе ввели новый предмет "Информатика". И сейчас молодое поколение превосходно владеет компьютерами, мгновенно осваивая быстро появляющиеся новинки. Если бы удалось ввести в средней школе курс вероятности и статистики - а такой курс есть в Японии и США, Швейцарии, Кении и Ботсване, почти во всех странах (см. подготовленный ЮНЕСКО сборник докладов [15]) - то ситуация могла бы быть резко улучшена. Надо, конечно, добиться, чтобы такой курс был построен на высоких эконометрических (статистических) технологиях, а не на низких. Другими словами, он должен отражать современные достижения, а не концепции пятидесятилетней или столетней давности.

 

Классификация эконометрических методов и моделей в принятия решений.

Ключевые классификации эконометрических моделей:

 

1) классификация эконометрических моделей по целевому назначению:

 

а) теоретико-аналитические модели, которые используются при исследовании общих свойств и закономерностей экономических процессов;

б) прикладные модели, которые используются при решении конкретных экономических задач (модели экономического анализа, прогнозирования, управления);

2) классификация эконометрических моделей по исследуемым экономическим процессам и содержательной проблематике. При этом выделяются:

 

а) модели народного хозяйства в целом и его отдельных подсистем-отраслей, регионов и т. д.;

б) комплексы моделей производства и потребления;

в) комплексы моделей формирования и распределения доходов;

г) комплексы моделей трудовых ресурсов;

д) комплексы моделей ценообразования;

е) комплексы моделей финансовых связей и др.

 

3) классификация эконометрических моделей на дескриптивные и нормативные модели:

 

а) дескриптивные модели предназначены для объяснения наблюдаемых фактов или для построения вероятностного прогноза. В качестве примера дескриптивной модели можно привести производственные функции и функции покупательного спроса, построенные на основе обработки статистических данных;

 

б) нормативные модели отвечают на вопрос «как это должно бытьβ», т. е. предполагают целенаправленную деятельность. В качестве примера нормативной модели можно привести модели оптимального планирования, характеризующие тем или иным образом цели экономического развития, возможности и средства их достижения;

 

4) классификация эконометрических моделей по характеру отражения причинно-следственных связей. При этом выделяют:

 

а) модели жестко детерминистские;

б) модели, в которых учитываются факторы случайности и неопределенности.

 

5) Классификация эконометрических моделей по способам отражения фактора времени. При этом выделяют:

 

а) статические модели, характеризующие исследуемую зависимость между переменными на определённый момент времени;

б) динамические модели, характеризующие изменение экономических процессов во времени.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...