Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Понятие объемной гидромашины




Трубопроводы с насосной подачей жидкости

Трубопровод с насосной подачей жидкости может быть разомкнутым, т.е. по которому жидкость перекачивается из одной емкости в другую (рис. 6.8, а), или замкнутым (кольцевым), в котором циркулирует одно и то же количество жидкости (рис. 6.8, б).

Рис. 6.8. Трубопроводы с насосной подачей

Рассмотрим трубопровод, по которому перекачивают жидкость из нижнего резервуара с давлением P 0 в другой резервуар с давлением P3 (рис. 6.8, а). Высота расположения оси насоса H1 называется геометрической высотой всасывания, а трубопровод, по которому жидкость поступает к насосу, всасывающим трубопроводом или линией всасывания. Высота расположения конечного сечения трубопровода H2 называется геометрической высотой нагнетания, а трубопровод, по которому жидкость движется от насоса, напорным или линией нагнетания.

Составим уравнением Бернулли для потока рабочей жидкости во всасывающем трубопроводе, т.е. для сечений 0-0 и 1-1 (принимая α = 1):

Это уравнение является основным для расчета всасывающих трубопроводов.

Теперь рассмотрим напорный трубопровод, для которого запишем уравнение Бернулли, т.е. для сечений 2-2 и 3-3:

Левая часть этого уравнения представляет собой энергию жидкости на выходе из насоса. А на входе насоса энергию жидкости можно будет аналогично выразить из уравнения:

Таким образом, можно подсчитать приращение энергии жидкости, проходящей через насос. Эта энергия сообщается жидкости насосом и поэтому обозначается обычно Hнас.

Для нахождения напора Hнас вычислим уравнение:

где Δz - полная геометрическая высота подъема жидкости, Δz = H 1 + H2;
КQm - сумма гидравлических потерь,
P3 и Р0 - давление в верхней и нижней емкости соответственно.

Если к действительной разности уровней Δz добавить разность пьезометрических высот (P3 - Р0) (ρg), то можно рассматривать увеличенную разность уровней

и формулу можно переписать так:

Hнас = Hст + KQm

Из этой формулы делаем вывод, что

Hнас = Hпотр

Отсюда вытекает следующее правило устойчивой работы насоса: при установившемся течении жидкости в трубопроводе насос развивает напор, равный потребному.

На этом равенстве основывается метод расчета трубопроводов с насосной подачей, который заключается в совместном построении в одном и том же масштабе и на одном графике двух кривых: напора Hпотр = f1(Q) и характеристики насоса Hнас = f2(Q) и в нахождении их точки пересечения (рис. 6.9).

Рис. 6.9. Графическое нахождение рабочей точки

Характеристикой насоса называется зависимость напора, создаваемого насосом, от его подачи (расхода жидкости) при постоянной частоте вращения вала насоса. На рис. 6.9 дано два варианта графика: а - для турбулентного режима; б - для ламинарного режима. Точка пересечения кривой потребного напора с характеристикой насоса называется рабочей точкой. Чтобы получить другую рабочую точку, необходимо изменить открытие регулировочного крана (изменить характеристику трубопровода) или изменить частоту вращения вала насоса.

 

Гидравлический удар.

Гидравлическим ударом называется резкое повышение давления, возникающее в напорном трубопроводе при внезапном торможении потока рабочей жидкости. Этот процесс является очень быстротечным и характеризуется чередованием резких повышений и понижений давления, которое связано с упругими деформациями жидкости и стенок трубопровода. Гидравлический удар чаще всего возникает при резком открытии или закрытии крана или другого устройства, управляемого потоком.

Если давление P0 невелико (P0 < Δ P уд), то картина изменения амплитуды показано на рис. 6.11, б.

Рис. 6.11. Изменение давления по времени у крана

Повышение давления при гидравлическом ударе можно определить по формуле

Δ Pуд = ρυ 0c

Данное выражение носит название формулы Жуковского. В нем скорость распространения ударной волны c определится по формуле:

где r - радиус трубопровода;
E - модуль упругости материала трубы;
δ - толщина стенки трубопровода;
K - объемный модуль упругости (см. п.1.3)

Если предположить, что труба имеет абсолютно жесткие стенки, т.е. E = , то скорость ударной волны определится из выражения

Для воды эта скорость равна 1435 м/с, для бензина 1116 м/с, для масла 1200 - 1400 м/с.

Понятие объемной гидромашины

Объемной называется гидромашина, рабочий процесс которой основан на попеременном заполнении рабочей камеры жидкостью и вытеснении ее из рабочей камеры. Под рабочей камерой объемной гидромашины понимается ограниченное пространство внутри машины, периодически изменяющее свой объем и попеременно сообщающееся с местами входа и выхода жидкости.

Объемная гидромашина может иметь одну или несколько рабочих камер.

В соответствии с тем, создают гидромашины поток жидкости или используют его, их разделяют на объемные насосы и гидродвигатели.

 

Насосы, гидродвигатели.

 

В объемном насосе перемещение жидкости осуществляется путем вытеснения ее из рабочих камер вытеснителями. Под вытеснителем понимается рабочий орган насоса, непосредственно совершающий работу вытеснения. Вытеснителями могут быть поршни, плунжеры, шестерни, винты, пластины и т. д.

По принципу действия, точнее по характеру процесса вытеснения жидкости, объемные насосы разделяют на поршневые (плунжерные) и роторные.

В поршневом (плунжерном) насосе жидкость вытесняется из неподвижных камер в результате лишь возвратно-поступательного движения вытеснителей (поршней, плунжеров, диафрагм).

В роторном насосе жидкость вытесняется из перемещаемых рабочих камер в результате вращательного или вращательно-поступательного движения вытеснителей (шестерен, винтов, пластин, поршней).

По характеру движения входного звена объемные насосы разделяют на вращательные (с вращательным движением входного звена) и прямодействующие (с возвратно-поступательным движением входного звена).

Объемный гидродвигателъ это объемная гидромашина, предназначенная для преобразования энергии потока жидкости в энергию движения выходного звена.

По характеру движения выходного (ведомого) звена объемные гидродвигатели делят на три класса:

гидроцилиндры с возвратно-поступательным движением выходного звена; гидромоторы с непрерывным вращательным движением выходного звена; поворотные гидродвигатели с ограниченным углом поворота выходного звена.

Объемный гидропривод это совокупность объемных гидромашин, гидроаппаратуры и других устройств, предназначенная для передачи механической энергии и преобразования движения посредством жидкости. Термин объемный гидропривод включает в себя понятие объемной гидропередачи, как части объемного гидропривода, состоящей из насоса, гидродвигателя (одного или нескольких) и связывающих их трубопроводов — гидролиний. Таким образом, гидропередача — это силовая часть гидропривода, через которую протекает основной поток энергии.

 

Под гидроаппаратурой понимаются устройства для. Управления потоком жидкости в гидроприводе, посредством которого осуществляется регулирование гидропривода. Последнее может быть ручным или автоматическим, а с другой стороны — механическим, гидравлическим, электрическим или пневматическим.

К общим свойствам объемных насосов, которые обусловлены их принципом действия и отличают их от насосов лопастных, относятся следующие.

1. Цикличность рабочего процесса и связанная с ней порционность и неравномерность подачи. Подача объемного насоса осуществляется не равномерным потоком, а порциями, каждая из которых соответствует подаче одной рабочей камеры.

2. Герметичность насоса, т. е. постоянное отделение напорного трубопровода от всасывающего (лопастные насосы герметичностью не обладают, а являются проточными).

3. Самовсасывание, т. е. способность объемного насоса создавать вакуум во всасывающем трубопроводе, заполненном воздухом, достаточный для подъема жидкости во всасывающем трубопроводе до уровня расположения насоса. Высота всасывания жидкости при этом не может быть больше предельно допустимой. Лопастные насосы без специальных приспособлений не являются самовсасывающими.

4. Жесткость характеристики, т.е. крутизна ее в системе координат Н (или р) по Q, что означает малую зависимость подачи насоса Q от развиваемого им давления. Идеальная подача совсем не зависит от давления насоса (характеристики лопастных насосов обычно пологие).

5. Независимость давления, создаваемого объемным насосом, от скорости движения рабочего органа насоса и скорости жидкости. В принципе при работе на несжимаемой жидкости объемный насос, обладающий идеальным уплотнением, способен создавать сколь угодно высокое давление, обусловленное нагрузкой, при сколь угодно малой скорости движения вытеснителей. Для получения высоких давлений с помощью лопастного насоса требуются большие частоты вращения колеса и большие скорости жидкости.

Объемные гидродвигатели в основном имеют те же свойства, что и объемные насосы, но с некоторыми отличиями, обусловленными иной функцией двигателей. Объемные гидродвигатели также характеризуются цикличностью рабочего процесса и герметичностью. Жесткость характеристик объемных гидродвигателей заключается в малой зависимости скорости выходного звена от нагрузки на этом звене (усилия на штоке гидроцилиндра и момента на валу гидромотора).

70) Напор насоса

Напор насоса – это сила давления, создаваемая лопастями или поршнем насоса, приложенная к тому, чтобы протолкнуть воду. Обычно указывается в метрах.

Напор насоса, измеряемый метрами - говорит нам о том, что воду он сможет поднять на высоту этих указанных метров напора. Каждые 10 метров напора - это одна атмосфера (1 Bar). Если напор 35 метров - это 3,5 Bar.

Например: Имеется у нас насос с напором 60 метров. Это означает, что насос сможет протолкнуть воду на высоту 60 метров. Смотри изображение:

На рисунке изображена емкость, в которой находится вода, и в нее помещен насос. Насос соединен с трубой определенной длины. Напором насоса, указанный метрами, способен поднять столб воды на высоту напора, как указано на изображении.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...