Методика оценки устойчивости объекта экономики при воздействии ионизирующего излучения ядерного взрыва.
Методика оценки устойчивости объекта экономики при воздействии светового излучения ядерного взрыва.
Световое излучение ядерного взрыва представляет собой электромагнитное излучение в ультрафиолетовой, видимой и инфракрасной областях спектра.
Источником светового излучения является светящаяся область (огненный шар), состоящая из раскаленных продуктов взрыва и воздуха. Из этой области излучается огромное количество лучистой энергии в чрезвычайно короткий промежуток времени, вследствие чего происходят быстрый нагрев облучаемых предметов, обугливание или воспламенение горючих материалов и ожог биологических тканей.
На долю светового излучения приходится 30-40% всей энергии ядерного или термоядерного взрыва.
Основным параметром, характеризующим поражающее действие светового излучения, является световой импульс Uсв. Световой импульс - это количество световой энергии, падающей на 1 м2 освещаемой поверхности, перпендикулярной к направлению излучения, за все время свечения области взрыва (огненного шара).
В единицах СИ световой импульс измеряется в Дж/м2. Внесистемная единица - кал/см2: 1 кал/см2 ≈ 42 кДж/м2. Продолжительность светового импульса tс.в., с зависит от мощности боеприпаса и определяется по формуле
где q - мощность боеприпаса, кт.
Световой импульс в данной точке прямо пропорционален мощности ядерного взрыва и обратно пропорционален квадрату расстояния до центра взрыва. На световой импульс также влияют вид ядерного взрыва, состояние (прозрачность) атмосферы и другие факторы.
При наземных взрывах световой импульс на поверхности земли при тех же расстояниях примерно на 40% меньше, чем при воздушных взрывах такой же мощности. Объясняется это тем, что в горизонтальном направлении излучает поверхность не всей сферы огненного шара, а лишь полусферы, хотя и большего радиуса.
Если земная поверхность хорошо отражает свет (снежный покров, асфальт, бетон и др.), то суммарный световой импульс (прямой и отраженный) при воздушном взрыве может быть больше прямого в 1,5-2 раза.
В атмосфере лучистая энергия всегда ослабляется из-за рассеивания и поглощения света частицами пыли, дыма, каплями влаги (туман, дождь, снег). Степень прозрачности атмосферы принято оценивать коэффициентом K, характеризующим степень ослабления светового потока. Считается, что в крупных промышленных городах степень прозрачности атмосферы можно охарактеризовать видимостью в 10-20 км; в пригородных районах - 30-40 км; в районах сельской местности 60-80 км.
Световое излучение, падающее на объект, частично поглощается, частично отражается, а если объект пропускает излучение, то частично проходит сквозь него. Стекло, например, пропускает более 90% энергии светового излучения. Поглощенная световая энергия преобразуется в тепловую, вызывает нагрев, воспламенение или обугливание преграды (объекта). Световое излучение поражает людей, воздействует на здания, сооружения, технику и леса, вызывая нагрев, воспламенение, пожары или обугливание преграды.
На открытой местности световое излучение обладает большим радиусом действия по сравнению с ударной волной и проникающей радиацией.
Тяжесть поражения людей световым излучением зависит не только от степени ожога, но и от его места и площади обожженных участков кожи. Люди выходят из строя, становятся нетрудоспособными при ожогах второй и третьей степени открытых участков тела (лицо, шея, руки) или под одежой при ожогах второй степени на площади не менее 3% поверхности тела (около 500 см2).
Величины световых импульсов, соответствующие ожогам кожи разной степени, кал/см2
Ожоги глазного дна возможны только при непосредственном взгляде на взрыв. Ожоги век и роговицы глаза возникают при тех же величинах импульсов, что и ожоги открытых участков кожи.
Временное ослепление, как обратимое нарушение зрения, наступает при внезапном изменении яркости поля зрения, обычно ночью и в сумерки. Ночью временное ослепление носит массовый характер и может продолжаться от нескольких секунд до нескольких десятков минут. Поражающее действие светового излучения в лесу значительно снижается, что приводит к уменьшению радиусов поражения людей в 1,5-2 раза по сравнению с открытой местностью. Однако необходимо помнить, что световое излучение при воздействии на некоторые материалы вызывает их воспламенение и приводит к возникновению пожаров. В населенных пунктах они возникают при световых импульсах от 6 до 16 кал/см2. При легкой дымке импульс уменьшается в 2 раза, при легком тумане - в 10 раз, при густом - в 20 раз.
Световое излучение в сочетании с ударной волной приводит к многочисленным пожарам и взрывам в результате разрушений в населенных пунктах газовых коммуникаций, повреждений в электросетях и емкостей ГСМ.
Степень поражающего действия светового излучения резко снижается при условии своевременного оповещения людей, использования ими защитных сооружений, естественных укрытий, (особенно лесных массивов и складок рельефа), индивидуальных средств защиты (защитной одежды, очков) и строгого выполнения противопожарных мероприятий.
Методика оценки устойчивости объекта экономики при воздействии ионизирующего излучения ядерного взрыва.
Характер воздействия проникающей радиации и радиоактивного заражения на элементы объекта. Проникающая радиация представляет собой поток γ-лучей и нейтронов, испускаемых из зоны ядерного взрыва. Радиоактивные продукты взрыва, выпавшие в районе взрыва и по следу движения облака взрыва, вызывают радиоактивное заражение местности и различных объектов. Выпавшие радионуклиды являются излучателями α- и β-частиц и γ-лучей.
Радиоактивное заражение местности зависит от количества радиоактивных продуктов, образующихся при ядерном взрыве, и метеоусловий в районе взрыва.
Изменение уровня радиации на местности во времени подчиняется следующему закону:
(9.5)
где P 0 - уровень радиации в некоторый момент t 0 после взрыва; P t - уровень радиации в момент времени t.
Суммарная доза, получаемая за время пребывания на зараженном участке открытой местности, определяется по формуле
(9.6)
Максимально возможная доза облучения
(9.7)
где P 1 - уровень радиации в момент t 1 (начало облучения); P 2 - уровень радиации в момент t 2 (конец облучения).
Физическая устойчивость объекта при воздействии проникающей радиации и радиоактивного заражения будет определяться устойчивостью материалов, систем и приборов, используемых в производстве. Проникающая радиация и радиоактивное заражение (ионизирующие излучения) могут приводить к изменению свойств материалов, используемых, в частности, в радиоэлектронных системах, привести к сбоям в работе этих систем и даже отказам в работе. Особенно подвержены воздействию ионизирующих излучений полупроводниковые, газоразрядные, вакуумные приборы, некоторые конденсаторы и резисторы, органические материалы. Из неорганических материалов - стекло, которое под действием излучений может существенно увеличить оптическую плотность.
Порядок оценки устойчивости работы объекта при воздействии проникающей радиации. Показателем устойчивости работы радиоэлектронной аппаратуры при воздействии проникающей радиации и радиоактивного заражения являются максимальные значения дозы, мощности дозы γ-излучения или потока нейтронов, которые не приводят к сбою в работе или выходу из строя данной аппаратуры.
Малогабаритная защита от γ-нейтронного излучения (экраны) должна включать в себя тяжелые химические элементы, такие, как свинец, железо, обладающие большим коэффициентом поглощения γ-излучения, и легкие - бор, водород, литий, хорошо замедляющие нейтроны.
Наиболее экономично размещение защиты в непосредственной близости от защищаемого объекта, что позволяет резко снизить размеры защиты, а следовательно, ее массу и стоимость.
Приближенно радиационную защиту можно рассчитать по слоям половинного ослабления γ-излучения или потока нейтронов.
Кратность ослабления K сл однослойной защитой толщи (во сколько раз ослабляется ионизирующее излучение) можно определить по формуле
(9.8)
где d пол - слой половинного ослабления; h - толщина защитного слоя.
Зная требуемую кратность ослабления, из уравнения (9.8) можно определить толщину защитного слоя h по формуле
(9.8а)
При многослойной защите кратность ослабления будет равна произведению кратностей ослабления слоев (i = 1,..., i = n):
(9.9)
Порядок определения коэффициента ослабления (защиты) K осл (K защ) или требуемой толщины экрана приведен в лекции 6 «Защитные сооружения ГО»
Воспользуйтесь поиском по сайту: