Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Криволинейные интегралы второго рода

Замена переменных в тройных интегралах

При вычислении тройного интеграла, как и двойного, часто удобно сделать замену переменных. Это позволяет упростить вид области интегрирования или подынтегральное выражение.

Пусть исходный тройной интеграл задан в декартовых координатах x, y, z в области U:

 

Требуется вычислить данный интеграл в новых координатах u, v, w. Взаимосвязь старых и новых координат описывается соотношениями:

Предполагается, что выполнены следующие условия:

1.Функции φ, ψ, χ непрерывны вместе со своими частными производными;

2. Существует взаимно-однозначное соответствие между точками области интегрирования U в пространстве xyz и точками области U' в пространстве uvw;

3. Якобиан преобразования I (u,v,w), равный

отличен от нуля и сохраняет постоянный знак всюду в области интегрирования U.

Тогда формула замены переменных в тройном интеграле записывается в виде:

В приведенном выражении означает абсолютное значение якобиана.

Для вычисления тройных интегралов часто используются цилиндрические и сферические координаты. Эти случаи рассматриваются подробно на страницах

- Тройные интегралы в цилиндрических координатах

- Тройные интегралы в сферических координатах

Ниже приводятся примеры вычисления интегралов с использованием других преобразований координат.

Пример 1

Найти объем области U, заданной неравенствами

 

 

Решение.

Очевидно, что данная область является наклонным параллелепипедом. Удобно сделать такую замену переменных, при которой наклонный параллелепипед преобразуется в прямоугольный. В этом случае тройной интеграл сразу распадается на произведение трех однократных интегралов.

Сделаем следующую замену:

Область интегрирования U' в новых переменных u, v, w ограничена неравенствами

Объем тела равен

Вычислим якобиан данного преобразования. Чтобы не выражать старые переменные x, y, z через новые u, v, w, найдем сначала якобиан обратного преобразования:

Тогда

Следовательно, объем тела равен

68 Криволинейные интегралы первого рода

Определение

Пусть кривая C описывается векторной функцией , где переменная s представляет собой длину дуги кривой (рисунок 1).

Если на кривой C определена скалярная функция F, то интеграл называется криволинейным интегралом первого рода от скалярной функции F вдоль кривой C и обозначается как

 

Криволинейный интеграл существует, если функция F непрерывна на кривой C.

Рис.1 Рис.2

 

Свойства криволинейного интеграла первого рода

Криволинейный интеграл I рода обладает следующими свойствами:

1. Интеграл не зависит от ориентации кривой;

 

2. Пусть кривая C1 начинается в точке A и заканчивается в точке B, а кривая C2 начинается в точке B и заканчивается в точке D (рисунок 2). Тогда их объединением будет называться кривая C1 U C2, которая проходит от A к B вдоль кривой C1 и затем от B к D вдоль кривой C2. Для криволинейных интегралов первого рода справедливо соотношение

 

3. Если гладкая кривая C задана параметрически соотношением и скалярная функция F непрерывна на кривой C, то

 

 

4. Если C является гладкой кривой в плоскости Oxy, заданной уравнением , то

 

5. Если гладкая кривая C в плоскости Oxy определена уравнением , то

 

6. В полярных координатах интеграл выражается формулой

 

где кривая C задана в полярных координатах функцией .

Пример 1

Найти интеграл вдоль отрезка прямой y = x от начала координат до точки (2,2) (рисунок 3).

Решение.

Рис.3 Рис.4

 

Криволинейные интегралы второго рода

Определение

Предположим, что кривая C задана векторной функцией , где переменная s − длина дуги кривой. Тогда производная векторной функции

представляет собой единичный вектор, направленный вдоль касательной к данной кривой (рисунок 1).

 

В приведенной выше формуле α, β и γ − углы между касательной и положительными направлениями осей Ox, Oy и Oz, соответственно.

Рис.1 Рис.2

 

Введем векторную функцию , определенную на кривой C, так, чтобы для скалярной функции

существовал криволинейный интеграл . Такой интеграл называется криволинейным интегралом второго рода от векторной функции вдоль кривой C и обозначается как

Таким образом, по определению,

где − единичный вектор касательной к кривой C.

 

Последнюю формулу можно переписать также в векторной форме:

где .

Если кривая C лежит в плоскости Oxy, то полагая R = 0, получаем

Свойства криволинейного интеграла второго рода

Криволинейный интеграл II рода обладает следующими свойствами:

1. Пусть C обозначает кривую с началом в точке A и конечной точкой B. Обозначим через −C кривую противоположного направления - от B к A. Тогда

 

2. Если C − объединение кривых C1 и C2 (рисунок 2 выше), то

3. Если кривая C задана параметрически в виде , то

 

4. Если кривая C лежит в плоскости Oxy и задана уравнением (предполагается, что R =0 и t = x), то последняя формула записывается в виде

 

Пример 1

Вычислить интеграл , где кривая C задана параметрически в виде .

Решение. Используя формулу

находим ответ:

71.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...