Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Измерение мощности и энергии




В настоящее время необходимо измерять мощность и энергию постоянного тока, активную мощность и энергию переменного однофазного и трехфазного тока, реактивную мощность и энергию трехфазного переменного тока, мгновенное значение мощности, а также количество электричества в очень широких пределах.

Электрическая мощность определяется работой, совершаемой источником электромагнитного поля в единицу времени.

Активная (поглощаемая электрической цепью) мощность

Pa=UIcosj > = I×2× R=U2/R, (1)

где U, I — действующие значения напряжения и тока; j — угол сдвига фаз.

Реактивная мощность

Рр = UIsin j = I2X. (2)

Полная мощность

Pn = UI=PZ. Эти три типа мощности связаны выражением

P = а 22р) (3)

Так, мощность измеряется в пределах 1 Вт... 10 ГВт (в цепях постоянного и однофазного переменного тока) с погрешностью ±(0,01...0,1) %, а при СВЧ — с погрешностью ±(1...5) %. Реактивная мощность от единиц вар до Мвар измеряется с погрешностью ±(0,1...0,5)%.

Диапазон измерения электрической энергии определяется диапазонами измерения номинальных токов (1 нА...1О кА) и на­пряжений (1 мкВ...1 MB), погрешность измерения составляет ±(0,1...2,5)%.

Измерение реактивной энергии представляет интерес только для промышленных трехфазных цепей.

Измерение мощности в цепях постоянного тока. При косвенном измерении мощности используют метод амперметра и вольтметра и компенсационный метод.

Метод амперметра и вольтметра. В этом случае приборы включаются по двум схемам (рис.1).

Метод прост, надежен, экономичен, но обладает рядом существенных недостатков: необходимостью снимать показания по двум

Рис..1. Схемы измерения мощности по показаниям вольтметра и амперметра при малых (а) и больших (б) сопротивлениях нагрузки

приборам; необходимостью производить вычисления; невысокой точностью за счет суммирования погрешности приборов.

Мощность Рх, вычисленная по показаниям приборов (рис. 1а), имеет вид

Она больше действительного значения мощности, расходуемой в нагрузке Рн, на значение мощности потребления вольтметра Рv, т. е. Рн = Рх – Рv.

Погрешность определения мощности в нагрузке тем меньше, чем больше входное сопротивление вольтметра и меньше сопротивление нагрузки.

Мощность Рх, вычисленная по показаниям приборов (рис 1., б), имеем вид

Она больше действительного значения мощности потребления нагрузки на значение мощности потребления амперметром РА. Методическая погрешность тем меньше, чем меньше входное сопротивление амперметра и больше сопротивление нагрузки.

Компенсационный метод. Этот метод применяется тогда, когда требуется высокая точность измерения мощности. С помощью компенсатора поочередно измеряется ток нагрузки и падение напряжения на нагрузке. Измеряемая мощность определяется по формуле

P=Uн Iн. (4)

При прямом измерении активная мощность измеряется электромеханическими (электродинамической и ферродинамической систем), цифровыми и электронными ваттметрами.

Электродинамические ваттметры применяются как переносные приборы для точных измерений мощности (класс 0,1... 2,5) в цепях постоянного и переменного тока с частотой до нескольких тысяч герц.

Ферродинамические щитовые вольтметры применяются в цепях переменного тока промышленной частоты (класс 1,5…2,5).

Рис.2

В широком диапазоне частот применяются цифровые ваттметры, основу

составляют различные преобразователи мощности (например, термоэлектрические), УПТ, микропроцессор и ЦОУ. В цифровых ваттметрах осуществляется автоматический выбор пределов измерений, самокалибровка и предусмотрен внешний интерфейс.

Для измерения мощности в высокочастотных цепях также используются специальные и электронные ваттметры.

Для измерения реактивной мощности на низких частотах служат реактивные ваттметры (варметры), в которых путем использования специальных схем отклонение подвижной части электродинамического ИМ пропорционально реактивной мощности.

Включение электромеханических ваттметров непосредственно в электрическую цепь допустимо при токах нагрузки, не превышающих 10... 20 А, и напряжениях до 600 В. Измерение мощности при больших токах нагрузки и в цепях высокого напряжения производится ваттметром с измерительными трансформаторами тока ТА и напряжения TV (рис..2).

Измерение активной мощности в цепях трехфазного тока. Метод одного ваттметра. Этот метод применяется только в симметричной системе с равномерной нагрузкой фаз, одинаковыми углами сдвига по фазе между векторами I и U и с полной симметрией напряжений (рис..3).

Рис..3. Схемы включения ваттметра в трехфазную трехпроводную цепь при полной симметрии присоединения нагрузки:

а — звездой; б — треугольником; в ~- с искусственной нулевой точкой

 

Рис.4. Схемы включения двух ваттметров в трехфазную цепь: а — в 1-ю и 3-ю; б — в 1-ю и 2-ю; в — в 2-ю и 3-ю

На рис..3, а нагрузка соединена звездой и нулевая точка доступна. На рис.3, б нагрузка соединена треугольником, ваттметр включен в фазу. На рис..3, в нагрузка соединена треугольником с искусственной нулевой точкой. Искусственная нулевая точка создается с помощью двух резисторов, каждый из которых равен сопротивлению цепи обмотки напряжения ваттметра (обычно указывается в техническом паспорте на ваттметр).

Показания ваттметра будут соответствовать мощности одной фазы, а мощность всей трехфазной сети во всех трех случаях включения прибора будет равна мощности одной фазы, умноженной на три:

Р = 3Pw

Метод двух ваттметров. Этот метод применяется в трехфазной трехпроводной цепи независимо от схемы соединения и характера нагрузки как при симметрии, так и при асимметрии токов и напряжений. Асимметрия — это система, в которой мощности отдельных фаз различны. Токовые обмотки ваттметров включаются в любые две фазы, а обмотки напряжения включаются на линейные напряжения (рис. 4).

Полная мощность может быть выражена в виде суммы показаний Двух ваттметров. Так, для схемы, представленной на рис..4, а,

где y1 — угол сдвига фаз между током I1 и линейным напряжением U12, y2- угол сдвига фаз между током I3 и линейным напряжением U32. В частном случае при симметричной системе напряжений и одинаковой нагрузке фаз y1, = 30° - j и y2 = 30° - j показания ваттметров будут:

При активной нагрузке (j= 0) показания ваттметров будут одинаковы, так как PW] = PW2 IUcos30°.

При нагрузке с углом сдвига ср = 60° показания второго ваттметра равны нулю, так как PW2 = IU cos(30° + j) = IU cos(30° + 60°) = 0, и в этом случае мощность трехфазной цепи измеряется одним ваттметром.

При нагрузке с углом сдвига j > 60° мощность, измеряемая вторым ваттметром, будет отрицательной, так как (30° +j) больше 90°. В этом случае подвижная часть ваттметров повернется в обратную сторону. Для отсчета необходимо изменить на 180° фазу тока в одной из цепей ваттметра. В этом случае мощность цепи трехфазного тока равна разности показаний ваттметров

Метод трех ваттметров. Для измерения мощности трехфазной цепи при несимметричной нагрузке включаются три ваттметра, и общая мощность при наличии нулевого провода будет равна арифметической сумме показаний трех ваттметров. В этом случае каждый ваттметр измеряет мощность одной фазы, показания ваттметра независимо от характера нагрузки будут положительные (параллельная обмотка включается на фазное напряжение, т. е. между линейным проводом и нулевым). Если нулевая точка недоступна и нулевой провод отсутствует, то параллельные цепи приборов могут образовать искусственную нулевую точку при условии, что сопротивления этих цепей равны между собой.

Измерение реактивной мощности в однофазных и трехфазных цепях. Несмотря на то что реактивная мощность не определяет ни совершаемой работы, ни передаваемой энергии за единицу времени, ее измерение также важно. Наличие реактивной мощности приводит к дополнительным потерям электрической энергии в линиях передачи, трансформаторах и генераторах. Реактивная мощность измеряется в вольт-амперах реактивных (вар) как в однофазных, так и в трехфазных трех- и четырехпроводных цепях переменного тока электродинамическими и ферродинамическими или специально предназначенными для измерения реактивной мощности ваттметрами. Отличие реактивного ваттметра от обычного состоит в том, что он имеет усложненную схему параллельной цепи для получения сдвига по фазе, равного 90°

между векторами тока и напряжения этой цепи. Тогда отклоне­ние подвижной части будет пропорционально реактивной мощности Рр = UIsinj. Реактивные ваттметры преимущественно применяются для лабораторных измерений и поверки реактивных счетчиков.

Реактивную мощность в трехфазной симметричной цепи можно измерить и активным ваттметром: для этого –токовая катушка последовательно включается в фазу А, катушка напряжения между фазами В и С.

Измерение мощности в цепях повышенной частоты. С этой це­лью можно использовать как прямые, так и косвенные измерения и в ряде случаев предпочтительнее могут оказаться косвенные, так как иногда легче измерить ток и напряжение на нагрузке, чем непосредственно мощность. Прямое измерение мощности в цепях повышенных и высоких частот производится термоэлектрическими, электронными ваттметрами, ваттметрами, основанными на эффекте Холла, и цифровыми ваттметрами.

Косвенные измерения осуществляются осциллографическим методом. Он применяется в основном тогда, когда цепь питается напряжением несинусоидальной формы, при высоких частотах, маломощных источниках напряжения и т. д.

Измерение энергии в однофазных и трехфазных цепях. Энергия измеряется электромеханическими и электронными счетчиками электрической энергии. Электронные счетчики электрической энергии обладают лучшими метрологическими характеристиками, большей надежностью и являются перспективными средствами измерений электрической энергии.

4. Измерение фазы и частоты

Фаза характеризует состояние гармонического сигнала в опре­деленный момент времени t. Фазовый угол в начальный момент времени (начало отсчета времени), т.е. при t = 0, называют нулевым (начальным) фазовым сдвигом. Разность фаз Dj измеряют обычно между током и напряжением либо между двумя напряжениями. В первом случае чаще интересуются не самим углом сдвига фаз, а величиной cosj или коэффициентом мощности. Cosj— это ко­синус того угла, на который опережает или отстает ток нагрузки от напряжения, приложенного к этой нагрузке. Фазовым сдвигом Dj двух гармонических сигналов одинаковой частоты называют модуль разности их начальных фаз Dj =|j1- j2|. Фазовый сдвиг Dj не зависит от времени, если остаются неизменными начальные фазы j1, и j2. Разность фаз выражается в радианах или градусах.

Методы измерения угла сдвига фаз. Эти методы зависят от диапазона частот, уровня и формы сигнала, от требуемой точности и Наличия средств измерений. Различают косвенное и прямое изменения угла сдвига фаз.

Косвенное измерение. Такое измерение угла сдвига фаз Между напряжением U и током I в нагрузке в однофазных цепях

осуществляют с помощью трех приборов — вольтметра, амперметра и ваттметра (рис.5). Угол j определяется расчетным путем из найденного значения cosj:

Метод используется обычно на промышленной частоте и обеспечивает невысокую точность из-за методической погрешности, вызванной собственным потреблением приборов, достаточно прост, надежен, экономичен.

В трехфазной симметричной цепи величина cosj может быть определена следующими измерениями:

• мощность, ток и напряжение одной фазы;

• измерение активной мощности методом двух ваттметров;

• измерение реактивной мощности методом двух ваттметров с искусственной нейтральной точкой.

Среди осциллографических методов измерения фазы наибольшее распространение получили методы линейной развертки и эллипса. Осциллографический метод, позволяющий наблюдать и фиксировать исследуемый сигнал в любой момент времени, используется в широком диапазоне частот в маломощных цепях при грубых измерениях (5... 10 %). Метод линейной развертки предполагает применение двухлучевого осциллографа, на горизонтальные пластины которого подают линейное развертывающее напряжение, а на вертикальные пластины — напряжение, между которыми измеряется фазовый сдвиг. Для синусоидальных кривых на экране получаем изображение двух напряжений (рис.6, а) и по измеренным отрезкам АБ и АС вычисляется угол сдвига между ними

где АБ — отрезок между соответствующими точками кривых при переходе их через нуль по оси X; АС — отрезок, соответствующий периоду.

Погрешность измерения jх зависит от погрешности отсчета и фазовой погрешности осциллографа.


Рис. 5.

Если вместо линейной развертки использовать синусоидальное развертывающее напряжение, то получаемые на экране фигуры Лиссажу при равных частотах дают на экране осциллографа форму эллипса (Рис. 6б). Угол сдвига jx=arcsin(АБ/ВГ).

Этот метод позволяет измерять jх в пределах 0 90о без определения знака фазового угла.

Погрешность измерения jх также определяется погрешностью отсчета

 

Рис..6. Кривые, получаемые на экране двухлучевого осциллографа: при линейной (а) и синусоидальной (б) развертке

и расхождениями в фазовых сдвигах каналов Х и Y осциллографа.

Применение компенсатора переменного тока с калиброванным фазовращателем и электронным осциллографом в качестве индикатора равенства фаз позволяет произвести достаточно точное измерение угла сдвига фаз. Погрешность измерения в этом случае определяется в основном погрешностью используемого фазовращателя.

Прямое измерение. Прямое измерение утла сдвига фаз осуществляют с помощью электродинамических, ферродинамических, электромагнитных, электронных и цифровых фазометров. Наиболее часто из электромеханических фазометров используют электродинамические и электромагнитные логометрические фазометры. Шкала у этих приборов линейная. Используются на диапазоне частот от 50 Гц до 6... 8 кГц. Классы точности — 0,2; 0,5. Для них характерна большая потребляемая мощность 1(5...10 Вт).

В трехфазной симметричной цепи измерение угла сдвига фаз j или cosj осуществляется однофазным или трехфазным фазометрами.

Цифровые фазометры используются в маломощных цепях в диапазоне частот от единиц Гц до 150 МГц, классы точности — 0,005; 0,01; 0,02; 0,05; 0,1; 0,5; 1,0. В электронно-счетных цифровых фазометрах сдвиг по фазе между двумя напряжениями преобразуется во временной интервал, заполняемый импульсами стабильной частоты с определенным периодом, которые под-считываются электронным счетчиком импульсов. Составляющие погрешности этих приборов: погрешность дискретности, погрешность генератора стабильной частоты, погрешность, зависящая от точности формирования и передачи временного интервала.

Методы измерения частоты. Частота является одной из важнейших характеристик периодического процесса. Определяется числом полных циклов (периодов) изменения сигнала в единицу времени. Диапазон используемых в технике частот очень велик и колеблется от долей герц до десятков. Весь спектр частот подразделяется на два диапазона — низкие и высокие.

Низкие частоты: инфразвуковые — ниже 20 Гц; звуковые — 20...20000 Гц; ультразвуковые — 20...200 кГц.

Высокие частоты: высокие — от 200 кГц до 30 МГц; ультравысокие — 30...300 МГц.

Поэтому выбор метода измерения частоты зависит от диапазона измеряемых частот, необходимой точности измерения, величины и формы напряжения измеряемой частоты, мощности измеряемого сигнала, наличия средств измерений и т.д.

Прямое измерение. Метод основан на применении электромеханических, электронных и цифровых частотомеров.

Электромеханические частотомеры используют измерительный механизм электромагнитной, электродинамической и ферродинамической систем с непосредственным отсчетом частоты по шкале логометрического измерителя. Они просты в устройстве и эксплуатации, надежны, обладают довольно высокой точностью. Их используют в диапазоне частот от 20 до 2500 Гц. Классы точно­сти — 0,2; 0,5; 1,0; 1,5; 2,5.

Электронные частотомеры применяются при измерениях в частотном диапазоне от 10 Гц до нескольких мегагерц, при уровнях входного сигнала 0,5... 200 В. Они имеют большое входное сопротивление, что обеспечивает малое потребление мощности. Классы точности — 0,5; 1,0 и ниже.

Цифровые частотомеры применяются для очень точных изме­рений в диапазоне 0,01 Гц... 17 ГГц. Источниками погрешности являются погрешность от дискретности и нестабильности кварцевого генератора.

Мостовой метод. Этот метод измерения частоты основан на использовании частотозависимых мостов переменного тока, питаемых напряжением измеряемой частоты. Наиболее распространенной мостовой схемой для измерения частоты является емкостной мост. Мостовой метод измерения частоты применяют для измерения низких частот в пределах 20 Гц... 20 кГц, погрешность измерения составляет 0,5... 1 %.

Косвенное измерение. Метод осуществляется с использованием осциллографов: по интерференционным фигурам (фигурам Лиссажу) и круговой развертки. Методы просты, удобны и достаточно точны. Их применяют в широком диапазоне частот 10 Гц... 20 МГц. Недостатком метода Лиссажу является сложность расшифровки фигур при соотношении фигур более 10 и, следовательно, возрастает погрешность измерения за счет установления истинного отношения частот. При методе круговой развертки погрешность измерения в основном определяется погрешностью квантования основной частоты.

МЕТОДЫ И СРЕДСТВА ИЗМЕРЕНИЙ ПАРАМЕТРОВ ИЗМЕРИТЕЛЬНЫХ ЦЕПЕЙ

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...