Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Гистохимические методы исследования




методы идентификации химических веществ в гистологических срезах. Составной частью Г. м. и. являются цитохимические методы, выявляющие химические вещества в клетках приготовленных мазков и отпечатков. В основе Г. м. и. лежит соединение принципов и методов химического анализа с принципами и методами морфологического изучения клеток и тканей, используемыми в цитологии и гистологии. Благодаря этому обеспечиваются существенные преимущества в изучении морфофункциональной организации растительных и животных тканей, т.к. выявленное химическое вещество можно связать с определенной тканевой или клеточной структурой, т.е. установить его локализацию. Г. м. и. находят широкое применение в гистологии, цитологии, эмбриологии, патологической анатомии, экспериментальной и клинической морфологии. С помощью разнообразных методов современной гистохимии можно судить об особенностях функционирования различных тканевых и клеточных структур, определять характер и темп обменных процессов в клетках и тканях, обнаруживать ранние проявления заболеваний.

Непременным условием проведения Г. м. и., особенно при выявлении ферментов и других веществ белковой природы, является сохранение структуры тканей и клеток в состоянии, близком тому, какое имеется в живом организме. Это достигается получением срезов свежезамороженных тканей с помощью ножа глубокого охлаждения и криостата, а также использованием лиофильной сушки. Некоторые Г. м. и., например выявление углеводных соединений, можно проводить после специальной фиксации тканей и заливки в парафин.

БЛИЖНЕПОЛЬНЫЙ МИКРОСКОП

К настоящему времени создано около 20 типов БСОМ, различающихся особенностями оптической схемы и функциональным назначением зонда. В зависимости от наличия или отсутствия диафрагмы на конце зонда их можно разбить на две основные группы: апертурные и безапертурные. Принцип действия апертурных БСОМ, составляющих преобладающее большинство современных приборов, поясняет приведенная на рис. 2 блок-схема микроскопа.

Луч лазера (обычно гелий-неонового или аргонового) через согласующий элемент попадает в заостренное металлизированное волокно и на выходе сужается до размеров диафрагмы. Взаимное перемещение острия и образца в трех измерениях x, y, z осуществляется с помощью пьезодвижителей. Прошедшие через образец или отраженные и рассеянные фотоны улавливаются одним из микрообъективов (2 или 1 соответственно, см. рис. 2) и направляются в регистрирующий прибор, обычно фотоумножитель. Такой микрообъектив, как правило, входит в схему обыкновенного оптического микроскопа, что позволяет осуществить выбор исследуемого участка и его привязку к более широкому полю. Приведенная на рис. 2 схема относится к приборам, работающим в режиме освещения (illumination mode). Широко распространены приборы, работающие в режиме сбора фотонов (collection mode), когда зонд переносит фотоны от образца, освещенного, например, через микрообъектив, к детектору. В комбинированном режиме (освещение / сбор) зонд выполняет одновременно обе функции.

Чтобы установить острие на нужной высоте над образцом, во всех сканирующих зондовых микроскопах используют зависимость величины I регистрируемого сигнала от z. В большинстве типов БСОМ зависимость I(z) неоднозначна, поскольку наряду с ближнепольным сигналом I1 регистрируется также периодически изменяющийся с z сигнал I2, вызванный интерференцией падающей и переотраженных в системе зонд-образец волн. Это затрудняет или делает полностью невозможным надежный контроль z по величине I = I1 + I2 при сближении острия с образцом. Лучшим решением проблемы является введение в БСОМ вспомогательных узлов, позволяющих им осуществлять также функции сканирующего туннельного или атомно-силового микроскопов, в которых определение z не вызывает существенных трудностей. В таких комбинированных приборах запись изображения осуществляется одновременно по двум каналам, один из которых воспроизводит рельеф поверхности, а другой - локальное распределение показателя преломления в тончайшем приповерхностном слое. Возможность различения оптического и топографического контрастов существенно упрощает интерпретацию изображения. Наибольшее распространение получил метод контроля z, основанный на изменении тангенциальной составляющей силы физического взаимодействия острия с образцом (shear force).

РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ БЛИЖНЕПОЛЬНЫХ МИКРОСКОПОВ

Основной характеристикой БСОМ является пространственное разрешение, которое в сильной степени зависит от условий освещения или в более общем случае - от наблюдения образца, структуры его поверхности и микрогеометрии зонда. Известно, что функция импульсного отклика дифракционно-ограниченной оптической системы описывается распределением Эри. Полуширина главного максимума распределения соответствует разрешению по Рэлею: Dx = 0,61l / sin j, где j - апертурный угол. В пределе при j p /2 Dx Dxmin = 0,61l. При прохождении света через малую диафрагму из-за рассеяния и геометрических ограничений происходит искажение и расширение Df спектра переносимых пространственных частот, которое также описывается распределением Эри Df = 0,61/ a. В результате при a 0 волновое поле непосредственно за диафрагмой содержит сколь угодно большие пространственные частоты и как следствие этого Dxmin 0. В реальной ситуации из-за конечной проницаемости металлического экрана (покрытия) минимальный эффективный радиус диафрагмы определяется глубиной проникновения света в металл или толщиной d скин-слоя. С учетом этого ожидаемое предельное разрешение, например, для зонда с алюминиевым покрытием в видимом диапазоне спектра составляет Dxmin ї 2d ї ї 13 нм, что соответствует лучшим экспериментальным результатам. Отсутствие физических ограничений размера вершины зонда в безапертурных БСОМ позволяет реализовать в них разрешение лучше 1 нм.

Флюоресцентный (флуоресцентный) микроскоп (лат. fluo — течь, греч. μικρός — маленький и греч. σκοπέω — смотрю) — специализированный световой микроскоп, предназначенный для изучения свойств органических или неорганических веществ с использованием явления флюоресценции (люминесценции) с возможностью исследования свечения под действием УФ-излучения, в отражённом или проходящем освещении.[1][2] Это лабораторная оптическая система для получения увеличенных изображений сверхмалых объектов с разрешающей способностью 1-10нм, с использованием различного характера свечения малых структурных элементов объекта под действием возбуждающего лазерного облучения. Микроскоп используется, например, для исследования живых клеток, с выдачей оцифрованных цветных стереизображений на экран 3D монитора. Современный флюоромикроскоп рассчитан на применении исследования эпитаксиального слоя методом передачи изображения, созданного и отражённого при флюромикроскопии. Основой конструкции данного микроскопа является возможность применения вертикального потока лучей в диапазоне длин волн ультрафиолетовых, синих или зелёных лучей видимого спектра света, который образуется, передаётся многоспектральными источниками света, например, лампой дуги или другими источником с длиной волны, отфильтрованный фильтром лучей возбуждения. Данный поток лучей, отражаясь от фильтра — дихроического зеркала или светоделителя, проходит через исследуемый образец (цель), обильно его освещая. При отражении и возврате лучей света эмиссии (возбуждения) он проходит через двуцветное зеркало, фильтруется фильтром, который блокирует нежелательные длины волн возбуждения. В данном случае флюоресценция — единственный способ в оптической микроскопии, когда исследуемый образец вслед за возбуждением начинает светиться своим собственным светом. Излучаемый им свет повторно исходит сферически во всех указанных направлениях и не зависит уже от действия источника лучей света возбуждения. Эпифлюоресцентная микроскопия дает возможность непосредственно наблюдать враще ние субъединиц друг относительно друга в сложных белках.

Конфокальная микроскопия — один из методов оптической микроскопии, обладающий значительным контрастом по сравнению с микроскопами классической схемы за счет использования диафрагмы, отсекающей поток фонового рассеяного света. В конфокальном микроскопе в каждый момент времени регистрируется изображение одной точки объекта, а полноценное изображение строится путем сканирования (движения образца или перестройки оптической системы). Для того, чтобы регистрировать свет только от одной точки после объективной линзы располагается диафрагма малого размера таким образом, что свет, испускаемый анализируемой точкой, проходит через диафрагму и будет зарегистрирован, а свет от остальных точек в основном задерживается диафрагмой. Наиболее часто встречающейся задачей для конфокальной микроскопии, благодаря ее высокому разрешению и контрасту, является изучение структуры клеток и их органелл, например, цитоскелета, ЭПР, лизосом, митохондрий, ядра, хромосом и даже генов. Исследуется также колокализация в клетке двух и более веществ. Еще одна задача – исследование динамических процессов, происходящих в живых клетках. Например, клеточного транспорта биологически-активных соединений, изменений концентрации и распределения ионов кальция. Записав в памяти компьютера серию оптических срезов, можно провести объемную реконструкцию объекта и получить его трехмерное изображение, не используя трудоемкую методику изготовления и фотографирования серийных гистологических срезов.

Развитием рентгеновского просвечивания является метод фазовой дисперсионной интроскопии (радиографии), который применяется к анализу мягких тканей биологических объектов. Рассмотрим схему метода. Рентгеновский коллимированный пучок двумя монохроматорами формируется в параллельный широкий поток рентгеновских лучей, который проходит через объект. В нем он ослабляется за счет частичного поглощения и, главное, преломляется из-за неоднородного распределения плотности вещества в объекте, что приводит к изменению фазы волны в плоскости волнового фронта за объектом. Прошедшее излучение анализируется высокосовершенным кристаллом-анализатором. Это фазово-модулированное излучение испытывает дифракционное рассеяние, характер которого зависит как от ориентации анализатора, так и от сложного интерференционного поведения поля на его поверхности. Отраженный (R) и прошедший (T) пучки регистрируются рентгеновской пленкой. Эта техника близка к интерферометрической схеме, когда в один из разделенных пучков вставляется исследуемый объект. В новой схеме изменяется угол кристалла-анализатора по отношению к направлению падающего пучка, что позволяет подбирать лучший контраст в изображении объекта. Малейшие изменения фазы волны приводят к значительному усилению контраста изображения по сравнению с обычным просвечиванием. Высокая фазовая чувствительность метода находится вне конкуренции с другими методами, что обеспечивает ему блестящую перспективу в диагностике раковых образований на ранних стадиях.

ЭЛЕКТРОННАЯМИКРОСКОПИЯ, совокупность электронно-зондовых методов исследования микроструктуры твердых тел, их локального состава и микрополей (электрических, магнитных и др.) с помощью электронных микроскопов (ЭМ) - приборов, в к-рых для получения увелич. изображений используют электронный пучок. Электронная микроскопия включает также методики подготовки изучаемых объектов, обработки и анализа результирующей информации. Различают два гл. направления электронной микроскопии: трансмиссионную (просвечивающую) и растровую (сканирующую), основанных на использовании соответствующих типов ЭМ. Они дают качественно разл. информацию об объекте исследования и часто применяются совместно. Известны также отражательная, эмиссионная, оже-электронная, лоренцова и иные виды электронной микроскопии, реализуемые, как правило, с помощью приставок к трансмиссионным и растровым ЭМ.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...