Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Определение усилий в стержнях фермы методом сечений (методом Риттера).

Этим методом удобно пользоваться для определения усилий в отдельных стержнях фермы, например, для проверочных расчетов (рис. 4)

При расчете методом сечении рекомендуется такая последовательность действии:

1.    Определить реакции опор, пользуясь уравнениями равновесия для всей фермы, рассматриваемой как твердое тело, находящееся под действием плоской системы сил.

2.  Ферму разделяют на две части сечением, проходящим через три стержня, в которых (или в одном из которых) требуется определить усилия, и рассматривают равновесие одной из этих частей. Действие отброшенной части заменяют соответствующими силами, направляя их вдоль разрезанных стержней от узлов, т. е., считая их растянутыми.

3.  Затем составляются уравнения равновесия так, чтобы в каждое уравнение входило одно неизвестное усилие.

4.  Из полученных уравнений находятся неизвестные усилия в стержнях; если в ответе получается знак «-», то это означает, что стержень сжат, а не растянут.

Глава 2.Расчет плоской фермы на подвижную нагрузку.

Содержание главы представляет из себя решение задачи на расчет плоской фермы при подвижной нагрузке.

Задача:

Рассчитать на прочность (т. е. подобрать площадь сечения) стержни 1, 2, 3, определив предварительно опасное положение силы Р=50 тонн, движущейся по нижнему поясу фермы; нагрузка, при движении груза, передается только на узлы фермы. Принять допустимое напряжение сигма = 1600 кг/см2.

Для определения усилий в стержнях сначала необходимо найти реакции опор А и В. Для этого мысленно отбросим опоры и заменим их действие на ферму реакциями ra и rb. Составим условия равновесия:

0<=х=>4с

Проверим правильность полученных реакций:

åFky=RA+RB-P=0, 0=0

Проведем сечение конструкции так, как указано на рис.1, и рассмотрим равновесие левой части фермы (рис.2), заменяя действие на нее правой части силами, направленными вдоль стержней (соответственно N0, N2, N3). Составим условия равновесия, учитывая, что нагрузка движется слева направо, а "х" есть изменение расстояние от опоры до узла, в котором приложена сила. Найдем усилия в стержнях для случая, когда 0<=х=>с

 

Рассмотрим теперь случай, когда 2с<=х=>4с (рис. 3). Так как нагрузка передается только на узлы, то условия равновесия будут иметь следующий вид:

Таким образом, найдены усилия в стержнях 2 и 3. Для того, чтобы найти усилие в стержне 1, применим метод вырезания узлов. Вырежем узел I. (Рис. 4) Составим условия равновесия, учитывая, что 0<=х=>с.

åFky = N2 +N1*cos(45°) - P = 0; Û N1= (P – Px/ 4c)Ö2

 

Составим условия равновесия, учитывая, что 2с<=х=>4с.

åFky = N2 +N1*cos(45°)  = 0; Û N1= (P – Px/ 4c)Ö2

Можно сделать вывод, что усилие в стержне 1 не зависит от точки приложения груза. Изобразим наглядно изменения усилий в стержнях при подвижной нагрузке.

Для стержня 1:

Из графиков легко можно определить наиболее опасные положения груза для каждого из рассматриваемых стержней, а, следовательно, и определить оптимальные площади сечений для них.

Площадь сечения (обозначим ее буквой S) элемента конструкции должна быть больше или равна отношению усилия, прилагаемого к этому элементу, к допустимому напряжению.

Для стержня 1:

наиболее опасно положение груза при х= 0, тогда абсолютное значение усилия N1(0)»70.710 (т), а S1 =70710 (кг) / 1600 (кг/см2)» 44.194 см2

Для стержня 2:

наиболее опасно положение груза при х= 2с, тогда абсолютное значение усилия N2(2c)=25 (т), а S1=25000 (кг) / 1600 (кг/см2)= 15.625 см2

Для стержня 3:

наиболее опасно положение груза при х= с, тогда абсолютное значение усилия N3(с)»37.5 (т), а S3 =37500 (кг) / 1600 (кг/см2)» 23.4375 см2

Таким образом, можно сделать вывод, что стержень 1 подвергается наибольшему воздействию, из трех исследуемых стержней. Задача решена.

Заключение.

В своей курсовой работе я рассмотрела одну из областей применения методов математики на теоретическом и практическом материале.

В теоретическое обоснование решения математической задачи, поставленной темой курсовой, вошли: основные понятия статики, исходные положения статики, теория о связях и их реакциях, теория о системах сил (сходящихся и плоских), а также методы расчета плоских ферм.

Итог курсовой работы - применение изложенной теории к решению конкретной задачи.

 

 

Литература

1. Б а т ь М. И., Джанелидзе Г. Ю., КельзонА. С. Теоретическая механика в примерах и задачах: Учеб. пособие для втузов. Т. 1. - М.: Наука. Гл. ред. физ.-мат.. лит., 1990.

2. Т а р г С. М. Краткий курс теоретической механики: Учебник для втузов. 12-е издание, - М.: Высшая школа, 1998.

 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...