Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Характеристика триплетного состояния

Ф КГМУ 4/3-04/04

ИП №6 от 14 июня 2007 г.

КАРАГАНДИНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ

Кафедра медицинской биофизики и информатики

Лекция

Тема: Закономерности поглощения света биологическими системами

Спектрофотометрические методы исследования

Взаимодействие электромагнитных волн с веществом

Дисциплина ООD 012 МВ 1112 «Медицинская биофизика»

Специальность 130100 «Общая медицина»

Курс – 1

Время (продолжительность) 1ч.

 

Караганда 20015 г.

 


Обсуждена и утверждена на заседании кафедры

"____"__________200___г. Протокол №_____

Заведующий кафедрой проф. ______________ Б.К. Койчубеков


Тема: Закономерности поглощения света биологическими системами

Спектрофотометрические методы исследования

Взаимодействие электромагнитных волн с веществом

Подтема: Люминесценция биологических систем

Цель: Определить основные физические испускания света.Дать понятия об основных механизмах люминесценции, спектра люминесценции, применение в медицине.

ПЛАН лекции

1. ЛЮМИНЕСЦЕНЦИЯ.

1.1.Квантовый выход флуоресценции

1.2.Характеристика триплетного состояния

1.2.1.Триплетнный уровень и фосфоресценция

2. МИГРАЦИЯ ЭНЕРГИИ И ЕЕ ВИДЫ.

Тезисы лекции:

ЛЮМИНЕСЦЕНЦИЯ.

Переход молекулы в возбужденное состояние можно рассматривать как акт запасания энергии кванта света в молекуле. Однако эта энергия имеет тенденцию весьма быстро растратиться. Прежде всего, происходит растрата той части энергии, которая представляет собой избыток по отношению к самому низшему подуровню наиболее низкого электронного уровня. При этом энергия растрачивается в тепло и отдается окружающей среде. Процессы растраты происходят чрезвычайно быстро за 10-13 – 10-11сек. Таким образом, молекула, поглотившая квант энергии любой величины через короткое время оказывается на самом низшем уровне возбуждения. Дальнейшая растрата энергии происходит более медленно. Средняя величина длительности жизни молекулы в нижнем синглентном возбужденном состоянии (S1) составляет около 10-9-10-8сек. Энергия, запасенная на этом уровне, может быть растрачена в тепло (безизлучательный переход S* – Sо), либо быть высвечена в виде кванта излучения (флуоресценция, переход S* – So) либо, наконец, быть использована для осуществления фотохимической реакции.

Подобно спектрам поглощения, спектры люминесценции (флуоресценции) сложных молекул размыты и лишены тонких деталей. Информативными оказываются не столько длины волн максимумов полос, сколько интенсивность, поляризация и длительность свечения.

Квантовый выход флуоресценции

Величина квантового выхода (j) определяется долей переходов с излучением, т.е. отношением количества квантов флуоресценции, испущенных с уровня S1, к поглощенным квантам и зависит от вероятности дезактивации синглетного возбужденного состояния по излучательному пути.

В растворе равновесное распределение молекул по их запасам колебательной энергии не зависит от избытка этой энергии, полученной при возбуждении, и, следовательно от длины волны возбуждающего света. Значит, Время жизни в состоянии S1 и квантовый выход (j) не зависят от длины волны возбуждающего света - закон Вавилова.

Поскольку энергия поглощенного кванта часто тратиться на тепловые колебания, энергия кванта флуорисценции оказывается меньше, т.е. спектр флуорисценции сдвинут в длинноволновую сторону относительно наиболее длинноволновой полосы поглощения - закон Стокса.

Форма полос флуорисценции определяется распределением колебательных подуровней основного состояния, т.е. отражает колебательную структуру основного состояния So. Часто распределение колебательных подуровней по энергиям у основного и возбужденного состояний одинаково, следовательно, полосы флуоресценции и поглощения будут зеркально симметричны относительно так называемого (О-О) перехода(единственный переход, имеющий одинаковую энергию поглощения и флуоресценции.

Органические молекулы имеют достаточно сложный набор колебательных уровней, поэтому вместо последовательности отчетливых максимумов (соответствующий простой серии колебательных уровней) в спектре сложных молекул наблюдается широкая полоса.

Флуоресценция происходит с самого нижнего уровня первого возбужденного состояния. Для идеальных флуоресцирующих молекул (j = 1) необходимо допустить, что в стационарных условиях число актов испускания за 1с будет равно числу актов поглощения, т.е. все переходы из возбужденного уровня на основной будут сопровождаться флуоресценцией.

В действительности квантовый выход флуоресценции меньше единицы вследствие существования в молекуле безизлучательных процессов.

В жидких растворах молекулы люминесцирующих соединений за время жизни этого состояния успевают много раз столкнуться с молекулами растворителя и других веществ. При этом происходит безизлучательная растрата энергии возбуждения - тушение люминесценции.

Эффективными тушителями люминесценции являются парамагнитные ионы (Fe 2+, Mn 2+,Ni 2+,Co 2+ и др.), молекулярный кислород, а так же некоторые галогены (йод, бром, и др.).

Характеристика триплетного состояния

Выявлено, что молекула наряду с синглетным (S) обладает и триплетным (Т) электронными уровнями, расположенными в шкале энергий ниже, чем синглетные.

Безизлучательный переход из состояния S* в состояние Т называется интеркомбинационной конверсией. Он связан с изменением ориентации спина фотоэлектрона на противоположную на уровне S*, в результате чего спины двух ранее спаренных пи-электронов, образующих химическую связь в основном состоянии So, теперь становятся параллельными. В силу этого триплетная молекула обладает двумя не спаренными электронами и проявляет парамагнитные свойства, как бирадикалы.

Переход из триплетного состояния в основное Т®So так же требует переориентации спина, в связи с чем вероятность этого перехода мала. Поэтому время жизни триплетного состояния намного больше, чем синглетного S* и составляет 10-6 – 10-2с и больше. Переходы Т ® So сопровождаются фосфоресценцией или могут происходить безизлучательно. Возможен обратный переход из триплетного в синглетное возбужденное состояние Т®S* за счет тепловой энергии, после чего наблюдается замедленная флуоресценция, сходная по спектрам с обычной флуоресценцией, а по длительности - с фосфоресценцией. Поскольку триплетная молекула Т живет достаточно долго, она может успеть поглотить второй квант и перейти на второй триплетный уровень (Т1 -® Т2 - поглощение).

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...