Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Графические характеристики насосов

Основные рабочие характеристики центробежных насосов

Заключение

Список используемых источников

 

Введение

 

Реология (от греч. rheos-течение, поток и logos-слово, учение), наука, изучающая деформационные свойства реальных тел. Реология рассматривает действующие на тело механическое напряжения и вызываемые ими деформации, как обратимые, так и необратимые (остаточные). В узком смысле - термин "реология" иногда относят только к изучению течения вязких и пластичных тел. Объектами реологии являются самые разнообразные материалы: полимеры (расплавы, растворы, армированные и наполненные композиционные материалы, резины), дисперсные системы (пены, эмульсии, суспензии, порошки, пасты), металлы и сплавы (особенно при высоких температурах), нефтепродукты, грунты, горные породы, строит. материалы (бетоны, битумы, силикаты), пищевые продукты и т.п. Биореология изучает механические свойства биологических жидкостей (крови, синовиальной, плевральной жидкостей) и деформационные свойства мышц, сосудов и пр.

 

 

1.Классификация сплошных сред по реологическим свойствам

 

Современными технологиями поточного производства продукции в различных отраслях промышленности перерабатывают широкий спектр сплошных сред, обладающих значительными пластичными свойствами.

К пластичным средам относятся такие, у которых упругие деформации пренебрежимо малы [1]. Однако, именно упругие деформации оказывают существенное влияние на характер деформационного поведения тиксотропных пластичных дисперсных сред, что обусловливает особенность их сдвигового течения в сквозных каналах измерительных приборов и технологического оборудования.

Особенностью сплошных пластичных сред является то, что их течение в сквозных каналах характеризуется соотношением упругости и пластичности, количественная величина которого изменяется в зависимости от скорости сдвига.

Кроме этого, при течении в трубах межоперационного транспорта, в сквозных каналах формующих прессов и других рабочих зонах технологического оборудования пластичные дисперсные среды проявляют эффект пристенного скольжения, или П - эффект, который необходимо учитывать в инженерных расчетах, поскольку он влияет на производительность.

Графики кривых течения пластичных сред, получаемые в широком диапазоне скоростей сдвига, как правило, не только нелинейные, но и имеют кривизну разного направления. При этом выпуклость участка графика кривой течения может быть обращена к оси касательного напряжения или к оси скорости сдвига.

Участки нелинейных графиков кривых течения сплошных сред, обладающих пластическими свойствами, в логарифмических координатах lg θ = lg θ (lg γ), обращенные к разным осям координат разделяются точкой смены направления кривизны графиков, так называемыми точками перегиба.

На рисунке 1 представлены схемы характерных графиков кривых течения сплошных сред, обладающих пластическими свойствами, изображенные в безразмерных координатах с точками перегиба А и В, в которых происходит смена направления кривизны графиков lg θ=lg θ(lg γ).

Из рисунка 1 видно, что с увеличением скорости сдвига γ направление выпуклости графика кривой течения (1) в точке А(20, 8) изменяется с направления к оси lg θ на направление к оси lg γ. А направление выпуклости графика кривой течения (2) изменяется в точке В(20, 3) в обратной последовательности, то есть с направления к оси lg γ на направление к оси lg θ.

Для обозначения направления кривизны участков графиков кривых течения введем знаки «+» и «-». При этом если кривая течения обращена выпуклостью к оси, ей присваивают знак «+», а если кривая течения обращена выпуклостью к оси lg θ - знак «-». Эти же знаки следует учитывать при написании реологических уравнений состояния пластичных материалов, проставляя их перед основной реологической характеристикой пластичных материалов - предельным напряжением сдвига θ0, поскольку на кривизну зависимостей касательного напряжения от скорости сдвига в логарифмических координатах влияет θ0.

Рисунок 1. Схемы графиков кривых течения в логарифмических координатах

Если в реологические уравнения состояния входят символы предельного напряжения сдвига θ0 со знаками ± θ0 и , то это означает следующее. Данные реологические уравнения состояния соответственно описывают кривые течения пластичных сред с точкой перегиба, в которой изменяется направление выпуклости графика от оси lg γ к оси lg θ и от оси lg θ к оси lg γ.

; (1)

, (2)

На рисунках 2, 3 и 4 представлены экспериментальные кривые течения полиэтилена [2], ацетат целлюлозы [3], консистентных смазок [4] и некоторых кондитерских сред [5, 6, 7], которые по характеру кривизны графиков относятся к первой и второй группам и могут быть описаны соответствующими реологическими уравнениями состояния (1) или (2).

Рисунок 2. Кривые течения: а - линейного полиэтилена при отношении длины капилляра к диаметру: 1 - 3,65 и 2 - 16 (температура 152 оС) [2]; б - ацетат целлюлозы при температуре: 1 - 190 оС и 2 - 210 оС [3]; в - 1 - смазки ГОИ - 54п при температуре 15оС и 2 - солидола жирового при температуре 20оС [4].


Рисунок 3. Кривые течения: 1 - песочное тесто с 20% яблочной пасты, 2 - жировая начинка для вафельных изделий [5, 6].

Рисунок 4. Кривая течения ржаного теста для коржиков - с 10% отрубей.

Кривые течения 1, 2а; 1,2 б и 2в, изображенные на рисунке 2, а также кривая течения 1 - на рисунке 3 относятся к первой группе и описываются реологическим уравнением состояния (1). Эти графики кривых течения показывают, что с ростом скорости сдвига происходит смена упруго-вязкого течения на пластично - вязкое.

Кривая течения ржаного теста с отрубями для коржиков (рисунок 4) подобна кривой течения для жировой начинки, представленной на рисунке 3б, и может быть описана с высокой точностью реологическим уравнением состояния (2).

Кривые течения 1 и 2 (рисунок 2в) и (рисунок 3), включая кривую течения на рисунке 4, в области малых значений скорости сдвига обращены выпуклостью к оси скорости сдвига. С ростом скорости сдвига кривизна графика меняется на противоположное направление и для данных кривых течения предлагается реологическое уравнение состояния (2). Такая очередность знаков у символа предельного напряжения сдвига в реологическом уравнении состояния указывает на преобладание пластических свойств, проявляемых средой при течении в диапазоне малых значений скорости сдвига. С ростом скорости сдвига пластично-вязкое течение среды меняется на упруго-вязкое с отрицательным значением предельного напряжения сдвига, что говорит о превосходящих упругих свойствах, проявляемых средой в области высоких скоростей сдвига.

На рисунках 5 и 6 приведены схемы кривых течения, изображенные в прямоугольной декартовой системе координат и относящиеся к первой и второй группам, что соответствует реологическим уравнениям состояния (1) и (2). Из рисунков 5 и 6 очевидно пояснение знаков «+» и «-» перед символом предельного напряжения сдвига.

От проявления сплошными средами преобладающих упругих или пластичных свойств в зависимости от скорости течения будет определяться величина производительности сквозных каналов, в которых транспортируется сплошная среда. Поэтому целесообразно знать закономерности, от которых зависит производительность.

Рисунок 5. Схема кривой течения упруго - вязко - пластической среды

Рисунок 6. Схема кривой течения пластично - вязко - упругой среды

Определим производительность сквозных каналов с круглым профилем поперечного сечения при течении в них дисперсных сред с учетом пристенного скольжения. С этой целью запишем уравнение Навье - Стокса в напряжениях на ось z канала:

. (3)

После интегрирования (3) получим:

(4)

Реологическое уравнение состояния (1) запишем в виде:

(5)

где - величина, обратная индексу течения.

Преобразуем (5) с учетом (4), получим дифференциальное уравнение течения пластической среды в сквозном канале с круглым профилем поперечного сечения:

(6)

Решением (6) с учетом граничных условий:

при

будет:

(7)

где β - коэффициент скольжения, учитывающий П - эффект.

Выражение расхода определим как сумму центрального квази - твердого ядра и периферийной кольцевой области:

(8)

Скорость ядра потока:

Расход центральной части потока:

(9)

Расход периферийной части

(10)

Решением (10) будет:

(11)

Расход по всему круглому поперечному сечению канала с учетом эффекта пристенного скольжения (П-эффект):

(12)

По уравнению (12) можно определить производительность сквозных каналов с учетом эффекта пристенного скольжения среды, обладающей пластичными свойствами, относительно стенки канала.

Пристенное скольжение или П-эффект является характерным для пластичных дисперсных сред. Если напряжение на стенке канала не превосходит значения предельного напряжения сдвига сплощной среды, то сохраняется внутренняя структура среды и она скользит по стенкам сквозного канала подобно твердой пробке. Повышение нагрузки приводит к переходу через предел пластической прочности среды вблизи стенки канала и в пристенной области возникает вязкое течение, а область неразрушенной структуры сохраняется вблизи оси потока, начиная с того значения радиуса, на котором напряжение сдвига достигает значения предельного напряжения сдвига дисперсной среды. Механизм пристенного скольжения характерен для высоконаполненных полимеров, консистентных смазок и широкого спектра пищевых дисперсных материалов, обладающих пластичными свойствами.

 

2.Основные характеристики насосв

 

2.1Определение понятия напора


Повышение давления насосом называется напором. Под напором насоса (H) понимается удельная механическая работа, передаваемая насосом перекачиваемой жидкости.

H = E/G [m]

E = механическая энергия [Н•м]
G = вес перекачиваемой жидкости [Н]

При этом напор, создаваемый насосом, и расход перекачиваемой жидкости (подача) зависят друг от друга. Эта зависимость отображается графически в виде характеристики насоса. Вертикальная ось (ось ординат) отражает напор насоса (H), выраженный в метрах [м]. Возможны также другие масштабы шкалы напора. При этом действительны следующие соотношения:

10 м в.ст. = 1 бар = 100 000 Па = 100 кПа

На горизонтальной оси (ось абсцисс) нанесена шкала подачи насоса (Q), выраженной в кубометрах в час [м3/ч]. Возможны также другие масштабы шкалы подачи, например [л/с]. Форма характеристики показывает следующие виды зависимости: энергия электропривода (с учетом общего КПД) преобразуется в насосе в такие формы гидравлической энергии, как давление и скорость. Если насос работает при закрытом клапане, он создает максимальное давление. В этом случае говорят о напоре насоса H0 при нулевой подаче.

Когда клапан начинает медленно открываться, перекачиваемая среда приходит в движение. За счет этого часть энергии привода преобразуется в кинетическую энергию жидкости. Поддержание первоначального давления становится невозможным. Характеристика насоса приобретает форму падающей кривой. Теоретически характеристика насоса пересекается с осью подачи. Тогда вода обладает только кинетической энергией, то есть давление уже не создается. Однако, так как в системе трубопроводов всегда имеет место внутреннее сопротивление, в реальности характеристики насосов обрываются до того, как будет достигнута ось подачи.

 

2.2Форма характеристик насоса


На рисунке показана различная крутизна характеристик насоса, которая может зависеть, в частности, от частоты вращения мотора.

Различное изменение подачи и давления

При этом крутизна характеристики и смещение рабочей точки влияет также на изменение подачи и напора:
• пологая кривая
– большее изменение подачи
при незначительном изменении напора
• крутая кривая
– большое изменение подачи
при значительном изменении напора

 

2.3Характеристика насосной системы

 

Трение, имеющее место в трубопроводной сети, ведет к потере давления перекачиваемой жидкости по всей длине. Кроме этого, потеря давления зависит от температуры и вязкости перекачиваемой жидкости, скорости потока, свойств арматуры и агрегатов, а также сопротивления, обусловленного диаметром, длиной и шероховатостью стенок труб.
Потеря давления отображается на графике в виде характеристики системы. Для этого используется тот же график, что и для характеристики насоса.

Характеристика системы

Форма характеристики показывает следующие зависимости:

Причиной гидравлического сопротивления, имеющего место в трубопроводной сети, является трение воды о стенки труб, трение частиц воды друг о друга, а также изменение направления потока в фасонных деталях арматуры.
При изменении подачи, например, при открывании и закрывании термостатических вентилей, изменяется также скорость потока и, тем самым, сопротивление.
Так как сечение труб можно рассматривать как площадь живого сечения потока, сопротивление изменяется квадратично. Поэтому график будет иметь форму параболы. Эту связь можно представить в виде следующего уравнения:

H1/H2 = (Q1/Q2)2


Если подача в трубопроводной сети уменьшается в два раза, то напор падает на три четверти. Если, напротив, подача увеличивается в два раза, то напор повышается в четыре раза. В качестве примера можно взять истечение воды из отдельного водопроводного крана.
При начальном давлении 2 бара, что соответствует напору насоса прим. 20 м, вода вытекает из крана DN 1/2 с расходом 2 м3/ч.
Чтобы увеличить подачу в два раза, необходимо повысить начальное давление на входе с 2 до 8 бар.

 

2.4. Изменяющаяся рабочая точка

 

Изменяющаяся рабочая точка

Рабочая точка

Точка, в которой пересекаются характеристики насоса и системы, является рабочей точкой системы и насоса. Это означает, что в этой точке имеет место равновесие между полезной мощностью насоса и мощностью, потребляемой трубопроводной сетью. Напор насоса всегда равен сопротивлению системы. От этого зависит также подача, которая может быть обеспечена насосом.

При этом следует иметь в виду, что подача не должна быть ниже определенного минимального значения. В противном случае это может вызвать слишком сильное повышение температуры в насосной камере и, как следствие, повреждение насоса. Во избежание этого следует неукоснительно соблюдать инструкции производителя.

Рабочая точка за пределами характеристики насоса может вызвать повреждение мотора. По мере изменения подачи в процессе работы насоса также постоянно смещается рабочая точка. Найти оптимальную расчетную рабочую точку в соответствии с максимальными эксплуатационными требованиями входит в задачи проектировщика.

Такими требованиями являются:
для циркуляционных насосов систем отопления — потребление тепла зданием,
для установок повышения напора — пиковый расход для всех мест водоразбора.
Все остальные рабочие точки находятся слева от данной расчетной рабочей точки.

На двух рисунках показано влияние изменения гидродинамического сопротивления на смещение рабочей точки. Смещение рабочей точки по направлению влево от расчетного положения неизбежно вызывает увеличение напора насоса. В результате этого возникает шум в клапанах. Регулирование напора и подачи в соответствии с потребностью может производиться применением насосов с частотным преобразователем. При этом существенно сокращаются эксплуатационные расходы.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...