Каковы режим, сущность и назначение сфероидизирующего отжига заэвтектоидных сталей?
Почему после перлитного превращения легированная сталь становиться прочнее углеродистой? Так как с увеличением переохлаждения уменьшается межпластиночное расстояние, то при одинаковой скорости охлаждения легированная сталь после перлитного превращения оказывается прочнее.
Опишите режимы полного отжига сталей и нанесите температуру отжига на диаграмму состояния? Для проведения полного отжига доэвтектоидную сталь нагревают до температуры, которая на 20—40 К выше точки Ас3 (рис. 92).
Если в стали с видманштеттовым ферритом (а также с мартенситной или бейнитной структурой, образовавшейся из-за подкалки при ускоренном охлаждении на воздухе отливок, сварных швов, горячего проката и поковок из легированных сталей) при нагреве наследуется исходное крупное зерно аустенита, то для достижения структурной перекристаллизации следует проводить высокотемпературный отжиг. Отжиг на крупное зерно с нагревом до 950—1100°С применяют к мягким низкоуглеродистым сталям для улучшения обрабатываемости резанием. Такие стали дают вязкую, трудно отделяемую стружку, способную привариваться к режущему инструменту, что делает поверхность шероховатой Каковы цель и режим неполного отжига доэвтектоидных сталей? Неполный отжиг доэвтектоидной стали проводят при нагреве до температур выше Ас1 но ниже Ас3
Рис. 92. Температура нагрева сталей для отжига 2-го рода: 1 — полный отжнг; 2 — неполный отжиг; 3— сфероидизирующий отжиг; 4 — нормализация Неполный отжиг доэвтектоидной стали используют для смягчения ее перед обработкой резанием, так как в результате эвтектоидного превращения при неполном отжиге образуется мягкий перлит. Неполный смягчающий отжиг позволяет сэкономить время и снизить стоимость обработки. Опишите механизм сфероидизации цементита при отжиге Сталей. В результате образуется структура зернистого перлита (сферодита), почему этот отжиг и называют сферо- идизирующим. Мелкие частицы цементита при температуре отжига в интервале Ас1---Аст получаются в результате деления цементитных пластин. При делении пластины растворяются в наиболее тонких участках, а также в местах выхода на межфазную поверхность Ц/А субграниц в цементите или аустените. В месте выхода субграницы в цементитной пластине на межфазную поверхность неуравновешенность сил поверхностного натяжения является стимулом для локального растворения цементита до такой конфигурации поверхности, чтобы эти силы уравновесились (рис. 93). Канавки растворения с выпуклыми в сторону аустенита стенками идут вдоль линий выхода субграниц на поверхность пластины. Известно, что растворимость частицы зависит от радиуса кривизны ее поверхности, и эта зависимость описывается уравнением Томсона — Фрейндлиха: \nCrIC00=2yV/kTr, (32) где Сг—концентрация раствора около межфазной границы с радиусом г; Сю —концентрация раствора около плоской границы; у — поверхностная (межфазная) энергия на границе фаз; V — атомный объем. Чем меньше радиус кривизны границы, тем больше около нее равновесная концентрация раствора. Следовательно, около выпуклых стенок канавок растворения в цементите (см. рис. 93) концентрация углерода в аустените будет больше, чем около остальной плоской поверхности пластины. Выравнивание состава в аустените снизит концентрацию углерода в нем около выпуклых стенок канавки, и так как аустенит здесь окажется ненасыщенным по отношению к цементиту, то цементит растворится и границы его спрямятся. Это в свою очередь вызовет нарушение равновесия сил поверхностного натя жения у выхода субграниц, последующее восстановление равновесия при углублении канавки и т. д. В результате пластина цементита будет разделена вследствие растворения по ее субгранице.
Деление цементитных пластин можно ускорить, применив холодную пластическую или теплую деформацию при температурах ниже А\. При этом цементитные пластины не разрушаются, как полагали ранее, а пластически деформируются. При нагреве после холодной и во время теплой деформации путем полигонизации образуются субграницы, способствующие делению цементитных пластин. Как показало электронно-микроскопическое просвечивание фольг, цементитные пластины делятся не только при их ускоренном растворении у выходов субграниц, но и в местах повышенной плотности дислокаций в цементите. После деления пластин мелкие их частицы сфероидизи- руются. Около краев и вершин цементитных частиц с малым радиусом кривизны концентрация углерода в аустените повышена в соответствии с уравнением (32). Выравнивание состава внутри аустенита приводит к повышению его концентрации около участков границы с большим радиусом кривизны, где аустенит пересыщается и выделяет цементит. Параллельное снижение концентрации углерода в аустените около краев и вершин приводит к их растворению. В результате градиент концентраций в аустените восстанавливается и процесс растворения цементита в участках с меньшим радиусом кривизны границы и выделения его в частках с большим радиусом кривизны приводит к округлению частиц. Таким образом, сфероидизация частиц цементита идет путем переноса углерода через окружающий твердый раствор. Рассмотренные механизмы деления пластин и сфероидизации частиц одной фазы, находящейся в равновесии с твердым раствором, — общие для сплавов на разных основах.
Каковы режим, сущность и назначение сфероидизирующего отжига заэвтектоидных сталей? К заэвтектоидным углеродистым сталям широко применяют отжиг с нагревом до 740—780 °С и последующим медленным охлаждением. После такого нагрева в аустените остается большое число нерастворившихся включений цементита, которые служат центрами кристаллизации во время распада аустенита при охлаждении. В результате образуется структура зернистого перлита (сферодита), почему этот отжиг и называют сфероидизирующим. Сфероидизирующему отжигу подвергают углеродистые и легированные инструментальные и шарикоподшипниковые стали. Сталь со структурой зернистого перлита обладает наименьшей твердостью, легче обрабатывается резанием, что особенно важно, например, для работы автоматических линий в условиях массового подшипникового производства. Кроме того, зернистый перлит является оптимальной исходной структурой перед закалкой. При исходной структуре зернистого перлита меньше склонность к росту аустенитного зерна, шире допустимый интервал закалочных температур, меньше склонность к растрескиванию при закалке, выше прочность и вязкость закаленной стали (мелкие глобули равномерно распределены в мартенсите закаленной заэвтектоидной стали)
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|