Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Гигиеническая оценка естественного и искусственного освещения помещений.

Цель занятия:

1. Изучить влияние естественного и искусственного освещения на организм человека и санитарные условия жизни.

2. Ознакомить студентов с гигиеническими требованиями к естественному и искусственному освещению помещений образовательных, лечебно-профилактических учреждений, методам его оценки и гигиенического нормирования.

3. Обучить принципам разработки профилактических мероприятий и рекомендаций по улучшению освещения помещений.

 

Контрольные вопросы

1. Значение освещения для жизнедеятельности и здоровья человека.

2. Основные зрительные функции и их зависимость от освещения

3. От каких факторов зависит естественное освещение в помещении?

4. Основные световые понятия и единицы

5. Гигиенические требования к естественному освещению помещений.

6. Методы гигиенической оценки естественного освещения помещений.

7. Устройство и принцип работы люксметра.

8. Гигиенические требования к искусственному освещению помещений.

9. Методы гигиенической оценки искусственного освещения помещений.

10. Гигиеническая характеристика различных источников света и светильников.

Свет является жизненно важным фактором внешней среды. Он оказывает влияние на многие физиологические процессы организма человека: является специфическим раздражителем органа зрения, активизирует процессы обмена веществ, повышает тонус ЦНС, усиливает процессы роста и развития организма, повышает сопротивляемость к неблагоприятным факторам внешней среды, устанавливает ритм физиологических функций организма. Высокий уровень освещённости позволяет выполнить зрительную работу с меньшим утомлением и лучшими результатами и, напротив, низкое освещение приводит к быстрому утомлению, к тормозным явлениям в ЦНС, к нарушению функций зрения и др. неблагоприятным сдвигам в организме.

Основными зрительными функциями являются острота зрения, контрастная чувствительность, быстрота различения, а также устойчивость ясного видения, цветоразличение, световая и темновая адаптация, аккомодация, критическая частота мельканий и др.

Острота зрения – максимальная способность глаза различать наименьшие детали объекта (точки, черточки, кружки) как отдельные друг от друга. Она определяется наименьшим углом, под которым две смежные точки видны как раздельные. Условно считают, что острота зрения равна единице, если разрешающий угол равен 1 минуте, что соответствует условиям рассматривания детали размером 1,45 мм на расстоянии 5 м. С увеличением освещенности до 100–150 лк она быстро возрастает, при дальнейшем её увеличении этот рост замедляется.

Контрастная чувствительность – способность глаза различать минимальную разность яркостей рассматриваемого объекта (детали) и фона или двух смежных поверхностей. Установлена зависимость контрастной чувствительности от условий освещения рассматриваемого объекта и яркости, к которой глаз предельно

адаптировался. Оптимальная яркость рабочих поверхностей составляет несколько сотен кд/м2 (≈500), а рассматриваемых объектов – значительно выше. Если рабочая поверхность отражает не более 30-40 % падающего света, то контрастная чувствительность наиболее высока при освещенностях 1000–2500 лк.

Быстрота различения или скорость зрительного восприятия – наименьшее время, необходимое для различения деталей объекта. Она заметно возрастает при увеличении освещенности до 100-150 лк, затем её рост замедляется (но не заканчивается) до 1000 лк и выше.

Все три перечисленные функции тесно взаимосвязаны и определяют интегральную функцию зрительного анализатора. Они же используются в гигиеническом нормировании освещения.

Для зрительной работы существенное значение имеет не только количественная сторона освещения – величина освещённости, но и качество освещения, т.е. равномерность освещения на рабочей поверхности и окружающем пространстве (распределение яркостей), контраст между рассматриваемым предметом и фоном, наличие блескости, направленность и спектральный состав светового потока. Эти закономерности послужили основанием гигиенических требований к нормированию освещённости и организации рационального освещения в помещениях различного типа в зависимости от выполняемой работы с различным уровнем точности.

Освещённость - величина не постоянная, зависит от многих факторов: географической широты местности, времени суток и года, рельефа местности, состояния погоды (степени облачности), а также от особенностей планировки здания, ориентации, формы окон, характера и чистоты оконных стекол, окраски стен, потолка и др. Например, тюлевые занавески поглощают до 40 %, портьеры – 80% падающего света, загрязнённые окна – до 50%, а промёрзшие – 80% света.

 

Основные световые понятия и единицы

Лучистая энергия, вызывающая световое ощущение, называется оптическим излучением, а мощность такого излучения – световым потоком.

Видимая часть солнечной радиации у поверхности земли составляет 40 % и в спектре её электро-магнитного излучения занимает узкий диапазон волн (от 400 до 760 нм). Глазнаиболее

чувствителен к средней части видимого спектра и имеет максимальную чувствительность при длине волны 555 нм (переходный желто-зеленый участок спектра). Эта чувствительность принята за единицу. По мере приближения к красному и сине-фиолетовому участкам спектра чувствительность глаза резко снижается. Относительную чувствительность глаза к разным участкам спектра называют относительной видимостью.

Световой поток (F) – мощность лучистой энергии, оцениваемаяглазом по производимому ею световому ощущению. Единица светового потока – люмен (лм) – световой поток, излучаемый точечным источником при силе света в 1 канделу (кд) в телесном угле в 1стерадиан (ср); стерадиан – телесный пространственный угол свершиной в центре сферы, вырезающий на поверхности сферы площадь, равную площади квадрата со стороной, длина которой равна радиусу сферы.

Сила света (J) – пространственная плотность светового потока (часть светового потока) от источника света в данном направлении внутри определённого телесного угла. Единица силы света – кандела (кд) – сила света, излучаемая в перпендикулярном направлении от источника (абсолютно черного тела с площади 1/600000 м2 при температуре затвердевания платины).

Освещенность (E) – поверхностная плотность светового потокаF, падающего на поверхность S, определяемая по формуле: E = F / S. Единица освещенности – люкс (лк) – освещенность поверхности площадью 1 м2 при падающем на неё световом потоке 1 лм.

Не всегда световой поток, падающий на освещаемую поверхность, полностью отражается от нее по направлению к глазу. Решающая роль в процессе видения принадлежит той части светового потока, которая, отражаясь от освещаемой поверхности, попадает на световоспринимающие элементы глаза, что и вызывает зрительное ощущение. Поэтому с точки зрения физиологии зрительного восприятия важен не падающий световой поток, а отраженный от освещаемой поверхности – яркость. Яркость (L) – величина светового потока, отраженного освещаемой или светящей поверхностью по направлению к глазу. Единица яркости – кандела на квадратный метр (кд/м2) – яркость равномерно светящей плоской поверхности площадью 1 м2, излучающей вперпендикулярном к ней направлении силу света, равную 1 канделе.Яркость определяется специальными приборами яркомерами.Яркость светящейся поверхности зависит от испускаемой ею силы света, угла, под которым рассматривается объект или поверхность и от ее световых свойств, так как падающий на поверхность световой поток частично пропускается и поглощается телом, а частично отражается. При постоянстве освещенности яркость фона или предмета тем больше, чем больше его отражательная способность, т. е. светлота.

Отражательная способность окружающих нас предметов неодинакова. Оптимальным уровнем яркости при выполнении зрительных работ считается яркость 500 кд/м2. Чрезмерно высокая яркость, вызывающая зрительный дискомфорт – слепимость, называется блёскостью. Различают блескость прямую (создается источниками света и осветительными приборами – светильниками, окнами), периферическую (от светящихся поверхностей, расположенных вдали от направления зрения), отраженную (от зеркальных поверхностей) при работе с металлом, стеклом, пластмассой и др. Коэффициент отражения – отношение отраженного светового потока (Fотр) к падающему (Fпад), определяемое по формуле: b = Fотр/ Fпад. Коэффициенты отражения зависят от цвета поверхности и принимаются следующими: белый цвет – 0,7-0,8; светло-бежевый, жёлтый – 0,5; цвет натурального дерева – 0,4; зеленовато-голубой – 0,3; голубой – 0,25; светло-коричневый, цвет крови – 0,15; коричневый, синий, фиолетовый – 0,1.

Коэффициент светопропускания (Т) – отношение светового потока, прошедшего через среду (Fпроп), к падающему световому потоку (Fпад): T = Fпроп/ Fпад. Этот коэффициент позволяет оценивать качество и чистоту оконных стёкол, осветительной арматуры.

Коэффициент пульсации освещённости характеризует колебания во времени светового потока, падающего на единицу поверхности. Коэффициент пульсации освещённости определяется отношением амплитуды колебаний освещённости к их среднему значению и вычисляются по формуле:

где Емакс – максимальное значение освещённости за период её колебания, Емин – минимальное значение освещённости за период её колебания, Еср – среднее значение освещённости за тот же период, лк.

Стробоскопический эффект – явление искажения зрительноговосприятия вращающихся, движущихся или сменяющихся объектов в мелькающем свете. Оно возникает при совпадении кратности частотных характеристик движения объектов и изменения светового потока во времени в осветительных установках с газоразрядными источниками света, питаемыми переменным током.

Гигиеническая оценка естественного освещения помещений.

 

Естественное освещение в производственных помещениях может быть боковым, верхним, комбинированным. Для его оценки пользуются двумя видами показателей:

· светотехническими (прямой метод)

· геометрическими (косвенный).

Прямой метод.

Предлагает использование объективного люксметра (тип Ю-16, Ю-116). Принцип устройства люксметра основан на преобразовании светового потока в электрический ток, измеряемый гальвонометром. Между образующимся фототоком и освещённостью имеется прямая зависимость, позволяющая по величине силы тока определить освещённость поверхности в люксах.

Рис. 1.Люксметры Ю 117, Ю 116.

Объективный люксметр состоит из двух частей: селенового фотоэлемента, вставленного в оправу, и чувствительного стрелочного гальванометра, шкала которого градуирована в люксах. Прибор работает на трёх поддиапазонах: до 25 лк, до 100 лки до 500 лк. Для измерения большей освещённости применяется насадка – светопоглотитель(сила поглощения которого равна 100). Фотоэлемент устанавливают на рабочем месте и по шкале гальванометра с учётом используемого поддиапазона и насадки – светопоглотителя отмечают число делений, на котором остановилась стрелка.

Косвенный метод.

Предлагает использование нескольких показателей: коэффициента естественной освещённости (КЕО), светового коэффициента (СК), коэффициента глубины заложения (КГЗ), угла отверстия в глазу и угла падения, некоторых добавочных показателей.

Коэффициент естественной освещённости (КЕО) нормируется и, следовательно, носит законодательный характер. КЕО определяется при помощи люксметра и представляет собой отношение горизонтальной освещённости внутри помещения на рабочем месте к одновременно измеренной горизонтальной освещённости под открытым небосводом (при рассеянном свете), выраженное в %. КЕО (при боковом освещении) – в школах, читальных залах – не менее 1,5%, в жилых помещениях – не менее 1 %.

Световой коэффициент (СК) носит рекомендательный (не законодательный) характер. СК выражается дробью, числитель которой – единица, а знаменатель – частное от деления площади помещения на площадь поверхности стёкол (остеклённой поверхности окон).

Рис. 2. Определение угла падения (САВ) и угла отверстия (ВАД).

Коэффициент глубины заложения (КГЗ) – отношение глубины заложения (или расстояния от наружной (светонесущей) стены до противоположной стены) к высоте помещения от пола до верхнего края окна (школы – не более 2, жилые здания – не более 2,25).

Угол падения – это угол, образованный двумя прямыми, идущими от рабочего места (исследуемой точки): одной горизонтальной (к нижнему краю окна), а другой – наклонной (к верхнему краю окна). Угол падения зависит от высоты окна, а также от расстояния исследуемого места до окна (не менее 27).

Угол отверстия - это угол, образованный двумя линиями, одна из которых идёт из исследуемой точки помещения к верхнему краю окна, а другая же направляется к верхней точке предмета, расположенного напротив окна (к крыше соседнего дома, вершине дерева и т.д.) (не менее 5).

При оценке естественного освещения также важно учитывать расстояние от верхнего края окна до потолка (оптимально 15 – 30 см, но не более 50 см), высоту подоконника (75-90 см), площадь оконных переплётов(не более 25 % общей площади окон),размер межоконных простенков(не более 1,5 ширины оконных проёмов), ориентацию зданий, помещений.Стёкла в оконных проемах должны быть ровные, прозрачные, чистые,затеняющих предметов на окнахне должно быть. Расстояние между фасадами зданийдолжно быть не более удвоенной высоты наиболее высокого из них.

В помещениях общеобразовательных учреждений обеспечиваются нормированные значения КЕО в соответствии с гигиеническими требованиями к естественному, искусственному, совмещенному освещению жилых и общественных зданий. При одностороннем боковом естественном освещении КЕО на рабочей поверхности парт в наиболее удаленной от окон точке помещения должен быть не менее 1,5%. При двустороннем боковом естественном освещении показатель КЕО вычисляется на средних рядах и должен составлять 1,5%.Световой коэффициент должен составлять не менее 1:6.Окна учебных помещений должны быть ориентированы на южные, юго-восточные и восточные стороны горизонта. На северные стороны горизонта могут быть ориентированы окна кабинетов черчения, рисования, а также помещение кухни. Ориентация кабинетов информатики - на север, северо-восток.Рекомендуется использование штор из тканей светлых тонов, обладающих достаточной степенью светопропускания, хорошими светорассеивающими свойствами, которые не должны снижать уровень естественного освещения. Для рационального использования дневного света и равномерного освещения учебных помещений следует не закрашивать оконные стекла;не расставлять на подоконниках цветы, их размещают в переносных цветочницах высотой 65 - 70 см от пола или подвесных кашпо в простенках между окнами;очистку и мытье стекол проводить по мере загрязнения, но не реже 2 раз в год (осенью и весной).

 

Гигиеническая оценка искусственного освещения помещений.

 

Искусственное освещение в производственных помещениях может быть общим (равномерным или локализованным) и комбинированным (общее + местное); рабочее (общее или комбинированное), аварийное, эвакуационное.

Совмещенное освещение – освещение, при котором одновременно применяется естественное и искусственное освещение в течение полного рабочего дня.

Общее освещение – освещение, при котором светильники размещаются в верхней зоне помещения равномерно (общее равномерное освещение) или применительно к расположению оборудования (общее локализованное освещение).

Комбинированное искусственное освещение помещения – освещение, при котором к общему освещению добавляется местное.

Местное освещение – освещение, дополнительное к общему, создаваемое светильниками, концентрирующими световой поток непосредственно на рабочих местах.

При обследовании искусственного освещения помещений устанавливают в первую очередь соответствие его гигиеническим требованиям: достаточность освещенности, равномерность и отсутствие блёскости, благоприятный спектральный состав (спектр должен быть близок к естественному свету), непрерывность светового потока от источника света, отсутствие ослепляющего действия, учёт требований безопасности труда, правильность выбора светильников, арматуры, их расположение, мощность ламп и т.д.

Рис. 3.Люксметр + УФ-Радиометр ТКА-ПКМ

Рис. 4. Люксметр + Пульсметр ТКА-ПКМ

Для оценки величины искусственной освещённости используются методы прямой люксметрии (методика использования объективного люксметра аналогична как и при измерении естественной освещённости), определение удельной мощности искусственного освещения и метод «ватт» (определение средней горизонтальной освещённости).

В учебных кабинетах, аудиториях, лабораториях уровни освещенности должны соответствовать следующим нормам: на рабочих столах - 300 - 500 лк, в кабинетах технического черчения и рисования - 500 лк, в кабинетах информатики на столах - 300 - 500 лк, на классной доске - 300 - 500 лк, в актовых и спортивных залах (на полу) - 200 лк, в рекреациях (на полу) - 150 лк.При использовании компьютерной техники и необходимости сочетать восприятие информации с экрана и ведение записи в тетради освещенность на столах обучающихся должна быть не ниже 300 лк.

Определение удельной мощности искусственного освещения производится путём подсчёта общей мощности ламп в помещении (ватт) и деление этой величины на площадь пола (м2), выражается полученная величина в ватт/м2 (Вт/м2). Удельная мощность для разных помещений различна(в школах при люминисцентных лампах – 16-24 Вт/м2,при лампах накаливания – 36-48 Вт/м2).

Для оценки равномерности освещения (называют иногда и коэффициентом неравномерности) необходимо найти отношение освещённости одной точки (обычно наименьшей освещённости) к другой (обычно наибольшей освещённости), находящихся на расстоянии 75 см в одной плоскости (не менее 0,5).

Определение яркости производится специальным визуальным люксметром, для чего приёмное отверстие окулярной трубки направляют на источник света и определяют степень освещения в люксах и результат умножают на постоянный коэффициент (множитель) равный 27*10-6, при этом получают значение яркости в нитах.

 

При гигиенической оценке искусственного освещения помещений необходимо знать характеристику светильников. Светильниками называют осветительные приборы, состоящие из источника света и осветительной арматуры. Светильники делятся на 3 основных типа: прямого, отраженного и рассеянного света. 80 % светового потока в светильниках прямого света направлено вниз, 80 % светового потока в светильниках отраженного света направлено вверх, на потолок и стены, 60 % светового потока в светильниках рассеянного света направлено вверх, 40% - вниз.С гигиенической точки зрения предпочтение отдается светильникам рассеянного света из молочного, опалового или матированного стекла, которые равномерно освещают помещение и не создают резких теней. Высота подвеса светильников: оптимальная - не менее 2,6 м от пола; допустимая – не менее 2,2 м от пола.

В настоящее время преимущественно используют электрические источники света: лампы накаливания, люминесцентныеи светодиодныелампы. Основными характеристиками электрической лампы являются напряжение (вольт) и мощность (ватт).

Лампы накаливания относятся к источникам света теплового излучения, в их спектре преобладают желто-красные лучи, что искажает цветовое восприятие. Они являются наиболее надежными источниками света в связи с простой схемой их включения, а условия внешней среды не оказывают влияния на их работу. К основным недостаткам этих ламп можно отнести небольшую светоотдачу (7–20 лм на 1 Вт энергии) и высокую яркость.

Люминесцентные лампы различаются по спектральному составу излучаемого света. Выпускаются осветительные лампы дневного света (ДС), белого света (БС), холодно – белого света (ХБС), тепло – белого света (ТБС), лампы с улучшенной цветопередачей (ЛДЦ, ЛТБЦ, ЛХБЦ). Люминесцентные лампы характеризуются следующими показателями: высокой светоотдачей, спектр ближе к естественному, малая яркость, рассеянный свет без резких теней, более правильная цветопередача. Однако физиологически освещённость этими лампами воспринимается ниже, поэтому нормы освещённости при люминесцентных лампах повышены в два раза. Также люминесцентные лампы крайне не рекомендуется применять во влажных помещениях, в помещениях с высокой температурой, а также при низкой температуре, люминесцентная лампа не выходит на полную светоотдачу (не разгорается). Возможен стробоскопический эффект. Наличие в люминесцентных лампах них паров ртути приводит к проблемам с их утилизацией.

Светодиод – полупроводниковый элемент, пропускающий электрический ток в одном направлении, излучая при этом заданный диапазон световых волн, видимый человеческому глазу. Светодиодная лампа состоит из выпрямительного блока и разного количества светодиодов (в зависимости от модели). На сегодняшний день имеет наиболее высокую энергоэффективность(светоотдача на уровне 100-150 Лм/Вт);высокий срок службы, в районе 100000 часов; малая температура нагрева;возможность использования при низких температурах окружающей среды, однако эксплуатировать светодиодную лампу при повышенной влажности не рекомендуется; несомненным преимуществом является механическая прочность (отсутствуют легко бьющиеся детали), а также виброустойчивость. Светодиодные лампы выпускаются в двух исполнениях - рассеивающие свет и как точечные источники. Необходимо также отметить широкий цветовой ряд. Недостатки – высокая стоимость;невозможность использования в условиях высоких температур.

Результаты научных исследований (Кучма В.Р., Текшева Л.М., М., 2013) определили преимущество светодиодного освещения в учебных помещениях образовательных учреждений, а также административных и общественных зданиях различного целевого назначения, заключающееся в создании более благоприятной световой среды для зрительной и умственной работы учащихся разного возраста и взрослых, их психофизиологического и функционального состояния (более устойчивый уровень работоспособности, меньшая степень распространенности выраженного утомления, сохранение высокого уровня резервных возможностей организма, стабильность зрительной системы, оптимизация психоэмоционального состояния, снижение негативного воздействия от компьютерной нагрузки – по сравнению с люминесцентным освещением). Субъективная оценка условий освещения при светодиодныхлампах– более комфортные по сравнению с люминесцентными.

Для определения необходимого количества светильников нужно удельную мощность (Вт/м2) умножить на площадь помещения и разделить на мощность одной лампы. Следует помнить, что величина удельной мощности зависит от подвеса светильника, площади помещения, освещённости, которую необходимо создать в данном помещении и вида ламп.

Примечание:

· освещение рабочих помещений нормируется в зависимости от характера выполняемой работы, её точности; максимальных размеров объекта различения (делятся на 8 разрядов), контраста фона с объектом различения и коэффициента отражения фона (разряды делятся на подразряды: а, б, в, г), характеристики фона.

· не рекомендуется совмещение в одном помещении устанавливать люминесцентные лампы и лампы накаливания; в помещениях без естественного света освещённость должна быть повышена на 25 – 30 %; при освещении ниже 75 лк – ощущение сумеречности.

Задание.

1. Ознакомьтесь с устройством и принципом работы люксметра.

2. Дайте гигиеническую оценку условиям естественного и искусственного освещения учебной аудитории.

Образец протокола для выполнения задания.

1. Гигиеническая оценка естественного освещения.

а) вид освещения (боковое, верхнее, комбинированное, одностороннее, двух-, трёхстороннее);

б) ориентация окон;

в) количество окон...., их форма...…., чистота оконных стекол, величина простенков между окнами;

г) цвет окраски потолка, стен, пола, оборудования;

д) определение СК (суммарная площадь остекления окон …....м2, площадь пола ….....м2, СК …...);

е) определение угла падения (чертёж и расчёты);

ё) определение угла отверстия (чертёж и расчёты);

ж) определение коэффициента заглубления;

з) определение КЕО: наружная горизонтальная освещенность …..... лк; освещенность на

рабочем месте.….... лк; КЕО ….....%.

2. Гигиеническая оценка искусственного освещения.

а) в аудитории ….......система освещения, установлены ……... светильники типа...………, место их размещения..………….., количество ламп………;

б) определение освещенности на рабочем месте;

в) определение равномерности искусственного освещения: соотношение минимальной и максимальной освещенности в лк на расстоянии 0,75 м..….;

г) определение удельной мощности освещения: число ламп...…, мощность одной лампы…....Вт, площадь пола..…м2; удельная мощность светильников...……Вт/м2;

д) расчёт необходимого количества светильников для создания заданной освещенности в аудитории. Заключение. Дать гигиеническую оценку естественному и искусственному освещению учебной аудитории.

Обсуждение полученных результатов.

 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...