Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Очищення промивальних рідин




 

Промивальну рідину необхідно очищати від вибуреної породи, абразивних частинок, що містяться у вихідному матеріалі, а деколи і від надлишкової твердої фази. Це пов’язано з тим, що частинки вибуреної породи негативно впливають на технологічні властивості промивальної рідини. Крім того, наявність в рідині абразивних частинок значно погіршує показники роботи доліт, гідравлічних вибійних двигунів, умови руйнування породи на вибої. Очищення промивальної рідини проводиться двома способами: гідравлічним і примусовим.

Гідравлічний спосіб очищення оснований на природному осіданні уламків вибуреної породи під дією сили тяжіння. При цьому способі рідина самостійно звільняється від уламків вибуреної породи, протікаючи по жолобній системі. Однак жолобна система не забезпечує достатнього ступеня очищення промивальної рідини.

При примусовому способі промивальна рідина очищається за допомогою спеціальних механізмів. Механізми, що застосовуються для очистки, за принципом дії поділяються на пристрої, в яких:

а) уламки вибуреної породи відділяються під дією сили тяжіння (вібраційні сита, сепаратори);

б) уламки вибуреної породи відділяються під дією відцентрової сили (гідроциклони, центрифуги).

Основним механізмом в очисній системі для видалення з промивальної рідини великих фракцій частинок вибуреної породи є вібраційне сито. Найпростіше вібраційне сито являє собою металеву раму, встановлену з допомогою амортизаторів на міцній основі під деяким кутом до горизонту. На рамі змонтоване решето з прогумованою поверхнею і натягнутою зверху сіткою з нержавіючого стального дроту, часто із спеціальним протиабразивним покриттям.

У поперечному напрямку сітка розтягнута, і її бічні поверхні закріплені на прогумованих краях решета. Рама приводиться в рух з частотою від 1000 до 2000 коливань за хвилину з допомогою електродвигуна через ексцентричний вал. Промивальна рідина поступає на вібруючу сітку через розподілювач потоку (рис. 9.3).

Рисунок 9.3 – Вібраційне сито

 

Гідроциклон (рис. 9.4) складається з вертикального циліндра з тангенціальним увідним патрубком, конуса, зливної труби і регулювального пристрою з насадкою. Промивальну рідину з відстійника подають спеціальним відцентровим насосом через патрубок в циліндр під надлишковим тиском (0,2-0,3) МПа. Оскільки патрубок приварений до циліндра тангенціально, то промивальна рідина набуває в циліндрі обертового руху.

 

 

1 - вертикальний циліндр; 2 - зливна труба; 3 - конус;

4 - регулювальний пристрій з насадкою;

5 - тангеціальний увідний патрубок

Рисунок 9.4 – Схема гідроциклона

 

Під дією відцентрової сили рідина розшаровується: найважчі частинки відкидаються до периферії, а найлегші концентруються ближче до центра, в середніх ділянках поперечного перерізу гідроциклону.

При високій частоті обертання рідини в гідроциклоні вздовж осі утворюється повітряний стовп, тиск в якому нижчий за атмосферний. Осьова швидкість на границі цього стовпа максимальна і направлена вверх, а на стінках гідроциклону - вниз. Внаслідок такого розподілу швидкостей в гідроциклоні утворюється поверхня, на якій осьова швидкість дорівнює нулю. Вона відділяє периферійну частину потоку з найважчими фракціями твердої фази, що зсувається по стінках гідроциклону вниз, від внутрішньої, найлегшої частини рідини, яка піднімається вверх. Фракцію найважчих частинок твердої фази, яка спускається вниз по спіральній траєкторії, разом з невеликою кількістю рідини видаляють через насадку в контейнер або відвал. Основний об’єм промивальної рідини з найтоншими фракціями твердої фази, в тому числі з найтоншими частинками розбурених порід, з гідроциклону через зливну трубу направляють в жолоб і дальше у відстійник або в приймальну ємність бурових насосів. Діаметр насадки вибирають із врахуванням найбільшого діаметра частинок, які повинні бути видалені з промивальної рідини.

Найзношуваніші деталі гідроциклонів - внутрішні поверхні ввідного патрубка, циліндра і конуса, а також насадку, виконують змінними.

Ефективність роботи гідроциклону знижується при зменшенні надлишкового тиску у ввідному патрубку і діаметра насадки, збільшенні умовної в’язкості і густини промивальної рідини, концентрації частинок твердої фази, зменшенні густини і розміру цих частинок. Для вилучення частинок, більших 40 мкм, використовують батарею гідроциклонів діаметром 150 мм і більше, в якій паралельно працюють декілька гідроциклонів. Умовно батарею гідроциклонів діаметром не менше 150 мм називають пісковідділювачем. Для вилучення твердих частинок розміром від 25 до 40 мкм використовують гідроциклони діаметром меншим, ніж 100 мм, батарею яких називають муловідділювачем.

Продуктивність гідроциклону залежить від його діаметра і надлишкового тиску на вході. Для нормальної роботи очисної системи продуктивність пісковідділювача повинна приблизно на 25 %, а муловідділювача - на 50 % перевищувати найбільшу витрату бурових насосів при бурінні свердловини.

Для очищення необважнених промивальних рідин застосовується трьохступенева система очищення: грубе очищення проводиться на віброситі, тонке очищення на піско- і муловідділювачах. При цій системі з промивальної рідини вилучається до 80-90% частинок розбурених порід, а деколи і більше.

Технологія очищення необважненого бурового розчину за триступеневою системою представляє собою ряд послідовних операцій. Буровий розчин зі шламом після виходу із свердловини піддається на першому ступені грубому очищенню на віброситі і збирається в ємності. Із ємності відцентровим насосом розчин подається в батарею гідроциклонів пісковідділювача, де з розчину видаляються частинки піска. Очищений від піску розчин поступає через верхню зливну трубу в ємність, а пісок скидається у відвал. З ємності відцентровим насосом розчин подається для остаточного очищення в батарею гідроциклонів муловідділювача. Після відділення частинок мула очищений розчин направляються в приймальну ємність бурових насосів, а мул скидається у відвал.

 

1 - свердловина; 2 - вібросито; 3, 5 - відцентрові насоси;

4 - пісковідділювач; 6 - муловідділювач; 7 - буровий насос; 8 - ємність

муловідділювач; 9 - ємність пісковідділювача; 10 - ємність вібросита.

Рисунок 9.5 – Схема триступеневого очищення промивальної рідини

 

Для очищення обважнених промивальних рідин, як правило, використовують тільки вібросита, оскільки в гідроциклонах разом з частинками породи видаляються частинки обважнювача розміром більшим, ніж 15 мкм.

Якщо при бурінні існує небезпека інтенсивних газопроявлень, то в систему очищення включають газовий сепаратор або дегазатор, які призначені для видалення газу з промивальної рідини.

Для видалення газу із розчину застосовують механічні, термічні, фізико-хімічні, відцентрово-вакуумні і вакуумні способи. У практиці буріння широко використовують вакуумні дегазатори. На рисунку 9.6 показана принципова схема найпоширенішого двокамерного вакуумного дегазатора. Такий дегазатор складається з двох однакових вертикальних дегазаційних камер А і Б. Кожна камера оснащена збірником дегазованої рідини, приймальним клапаном, зливним клапаном і поплавковим регулятором рівня рідини. Поплавкові регулятори обох камер з’єднані із здвоєнним клапаном-розрядником. Дегазаційні камери включаються в роботу поперемінно.

1 - зливний клапан; 2 - приймальний клапан; 3 - збірники дегазованої

рідини; 4 - поплавкові регулятори рівня; 5 - клапан-розрядник; 6 - ресивер; 7 - регулятор вакууму

Рисунок 9.6 – Схема двокамерного вакуумного дегазатора

 

У момент пуску дегазатора поплавковий регулятор рівня знаходиться в нижньому положенні і клапан-розрядник з’єднує одну дегазаційну камеру (наприклад, А) з вакуум-насосом, який створює розрідження в порожнині цієї камери. Як тільки розрідження досягне заданої величини, відкривається прийомний клапан, і газована рідина з відстійника (або газового сепаратора) починає засмоктуватись у камеру А. У верхній частині камери вона розтікається по спеціально змонтованих тарілках і звільняється від газу. Газ із камери відкачують вакуум-насосом, а дегазована рідина надходить у збірник. Коли рівень рідини піднімається до максимально допустимої висоти, поплавковий регулятор діє на клапан-розрядник, останній переключає вакуум-насос на дегазаційну камеру Б, а камеру А з’єднує з атмосферою. У результаті цього тиск в камері А зрівнюється з атмосферним, відкривається зливний клапан, і дегазована рідина зливається із збірника камери А в ємність, звідки її направляють для очищення від шламу на віборосита або гідроциклони. У той же час в дегазаційній камері Б проходить процес засмоктування газованої рідини і звільнення її від газу.

Повнота видалення газу з газованої промивальної рідини залежить від її реологічних властивостей, ступеня газованості, складу газу, величини вакууму, тривалості вакуумування порції рідини в дегазаційній камері та інших факторів. Оскільки через дегазатор необхідно пропускати всю газовану рідину, що виходить із свердловини, його продуктивність повинна бути більша за витрату бурових насосів. При більшому ступені газованості в склад очисної системи іноді доцільно включати декілька дегазаторів, які повинні працювати паралельно. Контроль повноти дегазації здійснюють заміром вмісту газу в пробах дегазованої промивальної рідини. Повноту дегазації можна підвищити додаванням до промивальної рідини реагента-піногасника.


Поделиться:





Читайте также:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...