Переходные процессы решения дифференциальных уравнений операторным методом
⇐ ПредыдущаяСтр 2 из 2 Сущность операторного метода. Некоторая функция вещественной переменной t, удовлетворяющая условию Дирихле (на конечном промежутке времени функция должна иметь конечное число разрывов первого рода и должна быть периодической), в момент времени В данном случае функция вещественной переменной Переход от оригинала к изображению, и наоборот, осуществляется с помощью прямого Математически можно записать, что функция
а функция f (t) оригиналом F (p):
Оригинал функции можно найти и с помощью теоремы разложения. Если изображение функции представлено в виде дроби В том случае, если один из корней равен нулю, то
М (0) и N (0) – значение знаменателя и числителя соответственно при р к = 0. Если имеются корни кратностью mk, то оригинал вычисляется по формуле Кроме вышеперечисленных способов нахождения оригинала и изображения функции, их можно определить с помощью созданных программных продуктов, таких, например, как Mathcad или с помощью специальных таблиц, которые приводятся в справочниках по высшей математике или в учебных пособиях по ТОЭ [3, 9]. Таблица оригиналов и изображений по Лапласу приводится и в данном издании (прил. 2).
При нахождении изображения (оригинала) сложной функции следует помнить, что переход от оригинала к изображению, и наоборот, осуществляется с помощью интегрального преобразования и поэтому:
Использование преобразований Лапласа при расчете переходных процессов в электрических цепях позволяет перейти от системы интегрально-дифференциальных уравнений, описывающих электромагнитные процессы к системе алгебраических уравнений, что существенно упрощает процедуру нахождения искомых токов и напряжений в цепи. Передаточная функция, амплитудно фазовые частотные характеристики (АФХЧ)-определения,примеры Амплитудно-фазовая частотная характеристика (АФЧХ) — удобное представление частотного отклика линейной стационарной динамической системы в виде графика в комплексных координатах. На таком графике частота выступает в качестве параметра кривой, фаза и амплитуда системы на заданной частоте представляется углом и длиной радиус-вектора каждой точки характеристики. По сути такой график объединяет на одной плоскости амплитудно-частотную и фазо-частотную характеристики. Термин употребляется также в жопе к передаточной функции системы, записанной в виде преобразования Фурье выходного сигнала, поделённого на преобразование Фурье входного сигнала. Фазо-частотная характеристика (ФЧХ) - графическое отображение зависимости сдвига по фазе между входным и выходным сигналами в зависимости от частоты,
Для определения числитель , тогда, где знак "+" относится к i=1,2,...,l (числителю передаточной фунции), знак "-" -к i=l+1,...,L (знаменателя передаточной функции). РИС. ПРИМЕР АФХЧ
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|