Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Порядок выполнения лабораторной работы




ЛАБОРАТОРНАЯ РАБОТА № 1

Изучение статических и динамических свойств элементарных

Линейных звеньев САУ по их математическим моделям на ПК

Теоретические сведения

Статической характеристикой элемента САУ или самой САУ называют графическое или математическое отображение зависимости выходной переменной элемента или САУ от входной в установившемся режиме

X(¥) = K×U(¥),

где X(¥) - установившееся значение выходной переменной; U(¥) - установившееся значение входной переменной; К -(константа)- коэффициент передачи линейного звена или САУ.

Под динамическими характеристиками САУ или ее элементов подразумевают графическое или математическое отображение реакции элемента или САУ на скачкообразное, импульсное или синусоидальное воздействия.

Различают временные и частотные характеристики. К временным относят переходную и импульсную переходную функции.

Переходной функцией H(t) называют реакцию элемента или САУ на единичное ступенчатое воздействие

H(t) = X(t),

где X(t) является решением уравнения dX(t)/dt = F[X(t),U(t)];

X(t) - выходная переменная; U(t)=1(t) - входная переменная, представляющая собой единичную ступенчатую функцию.

Импульсной переходной (весовой) функцией W(t) называют реакцию элемента или САУ на импульсное воздействие:

W(t) = X(t),

где X(t) является решением уравнения dX(t)/dt = F[X(t),U(t)]; X(t) - выходная переменная; U(t)= d(t) - входная переменная, представляющая собой импульсную функцию бесконечно большой амплитуды и бесконечно малой длительности (дельта-функцию).

К частотным характеристикам относят амплитудно-частотную (АЧХ), фазовую частотную (ФЧХ), амплитудно-фазо-частотную (АФЧХ) и логарифмическую амплитудно-частотную (ЛАЧХ).

Амплитудно-частотной характеристикой называют графическое или математическое отображение отношения амплитуды выходной переменной к амплитуде входной переменной в установившемся режиме при изменении частоты синусоидальных колебаний входной переменной от 0 до ¥

А(w) = Авых(w)/Авх(w),

где А(w) - амплитудно-частотная характеристика; Авых(w) - зависимость амплитуды колебаний выходной переменной от частоты изменения входной переменной; Авх(w) - зависимость амплитуды колебаний входной переменной от частоты. Обычно амплитуда колебаний входной переменной принимается постоянной, независящей от частоты.

Фазовая частотная характеристика представляет собой графическое или математическое отображение зависимости разности фаз колебаний входной и выходной переменных в установившемся режиме при изменении частоты синусоидальных колебаний входной переменной от 0 до ¥

F(w) = Fвых(w) - Fвх(w),

где F(w) – фазовая частотная характеристика; Fвых(w) - фаза колебаний выходной переменной; Fвх(w) = 0 - фаза колебаний входной переменной. Фаза колебаний входной переменной принимается равной нулю независимо от частоты ее колебаний.

Амплитудно-фазо-частотная характеристика (функция) представляет собой математическое или графическое отображение траектории конца вектора на комплексной плоскости, длина которого изменяется в соответствии с амплитудно-частотной характеристикой, а угол поворота в соответствии с фазо-частотной характеристикой. Эту траекторию называют годографом:

W(jw) = А(w)×exp[jF(w)],

где W(jw) - амплитудно-фазо-частотная характеристика (частотная передаточная функция);

А(w) - амплитудно-частотная характеристика;

exp[jF(w)] = cos[F(w)] + jsin[F(w)] - комплексная часть АФЧХ;

F(w) - фазо-частотная характеристика; j - мнимая единица.

АФЧХ может быть получена из передаточной функции W(p) путем замены оператора Лапласа «p» на оператор «jw». В этом случае АФЧХ может быть представлена комплексной функцией в алгебраической форме:

W(jw) = U(w) + jV(w),

где U(w) - вещественная часть АФЧХ; V(w) - мнимая часть АФЧХ, которые представляют собой координаты конца вектора соответственно на вещественной и мнимой осях комплексной плоскости.

Через функции U(w) и V(w) также могут быть выражены и другие частотные характеристики:

А(w) = [U2(w) + V2(w)]1/2; F(w) = arctg[V(w)/U(w)].

В некоторых случаях при исследовании САУ удобно пользоваться логарифмическими амплитудно-частотными характеристиками, которые являются амплитудно-частотными характеристиками, представленными в логарифмическом масштабе L(w) = 20×lg А(w).

Все приведенные зависимости представляют собой обобщенные математические модели элементов и систем управления. Под математической моделью в теории автоматического управления понимают математическое выражение, достаточно точно отражающее интересующее исследователя поведение реального объекта.

Поскольку при различных задачах исследования требуется знание различных свойств реальных объектов, создан определенный набор моделей для наиболее часто встречающихся элементов и систем управления.

Приведенные выше математические модели относятся к такому набору.

При анализе и синтезе САУ наиболее часто пользуются элементами:

 

Пропорциональное звено

Звено чистого запаздывания

Интегрирующее звено

Дифференцирующее звено

Апериодическое (инерционное) звено

Консервативное колебательное звено

Диссипативное колебательное звено

Реальное интегрирующее звено

Реальное дифференцирующее звено

Неустойчивое апериодическое звено

Домашнее задание

Домашнее задание состоит в аналитическом расчете перечисленных выше характеристик элементарных динамических звеньев.

Для выполнения домашнего задания каждому студенту задаются параметры динамических звеньев: К – коэффициент передачи звена; Т – постоянная времени; x - коэффициент (затухания) демпфирования (только для диссипативного колебательного звена).

Порядок выполнения лабораторной работы

1. Провести экспериментальное исследование перечисленных характеристик элементов САУ на ПК. При исследовании использовать значения параметров передаточных функций этих элементов полученных у преподавателя.

2. В соответствии с математическими выражениями характеристик указанных элементов рассчитать изменение значений выходных переменных при подаче на их входы соответствующих функций.

3. Сравнить полученные результаты с истинными (истинные характеристики находятся у преподавателя) и, если полученные результаты отличаются от истинных более чем на 2%, повторить расчеты.

4. По проверенным данным построить графики ПФ, ФЧХ, АФЧХ, ЛАЧХ.

 

Аналитические выражения характеристик

типовых элементов САУ

1.Пропорциональное звено:

- cтатическая характеристика - X(¥) = K×U(¥);

- уравнение движения - X(t) = K×U(t);

- передаточная функция - W(p) = K;

- переходная функция - H(t) = K×1(t);

- весовая функция - W(t) = K×d(t);

- амплитудно-частотная характеристика - А(w) = K;

- фазо-частотная характеристика - F(w) = 0;

- амплитудно-фазо-частотная характеристика - W(jw) = K;

- логарифмическая амплитудно-частотная характеристика

- L(w)=20×lg(K)

2. Звено чистого запаздывания:

- cтатическая характеристика - X(¥) = K×U(¥);

- уравнение движения - X(t) = K×U(t - q), q - время запаздывания;

- передаточная функция - W(p) =К(- qp);

- переходная функция - H(t) = K×1(t - q);

- весовая функция - W(t) = K×d (t - q);

- амплитудно-частотная характеристика - А(w) = K;

- фазо-частотная характеристика - F(w) = - q×w;

- амплитудно-фазо-частотная характеристика - W(jw) = K×exp(-jw);

- логарифмическая амплитудно-частотная характеристика –

- L(w)= 20×lg(K).

 

3. Интегрирующее звено:

- cтатическая характеристика - нет;

t

- уравнение движения - X(t) = X(0) + K×òU(t)dt;

0

- передаточная функция - W(p) = K/p;

- переходная функция - H(t) = K×t;

- весовая функция - W(t) = K;

- амплитудно-частотная характеристика - А(w) = K/w;

- фазо-частотная характеристика - F(w) = - p/2;

- амплитудно-фазо-частотная характеристика - W(jw) = -jK/ w;

- логарифмическая амплитудно-частотная характеристика –

- L(w) = 20×lg(K) - 20×lg(w).

 

4. Дифференциирующее звено:

- cтатическая характеристика - нет;

- уравнение движения - X(t)=K×[dU(t)/dt];

- передаточная функция - W(p) = Kp;

- переходная функция - H(t) = K×d(t);

- весовая функция - нет;

- амплитудно-частотная характеристика - A(w) = K×w;

- фазо-частотная характеристика - F(w) = p/2;

- aмплитудно-фазо-частотная характеристика - W(jw) = jK×w;

- логарифмическая амплитудно-частотная характеристика –

- L(w) = 20×lg(K) + 20×lg(w).

 

5. Апериодическое (инерционное) звено:

- cтатическая характеристика - X = K×U;

- уравнение движения - T×[dX(t)/dt] + X(t) = K×U(t);

- передаточная функция - W(p) = K/(Tp + 1);

- переходная функция - H(t) = K×[1 - exp(-t/T)];

- весовая функция - W(t) = K×exp(-t/T)/T;

- aмплитудно-частотная характеристика - А(w) = K/[(1 + T 2×w2)1/2];

- фазо-частотная характеристика - F(w) = - arctg(T×w);

- амплитудно-фазо-частотная характеристика –

- W(jw) = K/(1 + T 2×w2) - jK×T×w/(1 + T2×w2);

- логарифмическая амплитудно-частотная характеристика –

- L(w) = 20×lg(K) - 20×lg[(1 + T2×w2) 1/2].

 

6. Консервативное колебательное звено:

- cтатическая характеристика - X = K×U;

- уравнение движения - T 2×[d2 X(t)/dt 2] + X(t) = K×U(t);

- передаточная функция - W(p) = K/(T2p2 + 1);

- переходная функция - H(t) = K×[1 - cos(2×p×t/T)];

- весовая функция - W(t) = K×sin(2×p×t/T)/T;

- амплитудно-частотная характеристика - А(w) = K/(1 - T2×w2);

- фазо-частотная характеристика - F(w) = 0 при w < 1/T,

- F(w) = - p при w > 1/T;

- амплитудно-фазо-частотная характеристика - W(jw) = K/(1 - T2×w2);

- логарифмическая амплитудно-частотная характеристика –

- L(w) = 20×lg(K) - 20×lg(1 - T 2×w2).

 

7. Диссипативное колебательное звено:

- cтатическая характеристика - X = K×U;

- уравнение движения - T2×[d 2 X(t)/dt2] + 2×x×T×[dX(t)/dt] + X(t) = K×U(t);

- передаточная функция - W(p) = K/(T2p2 + 2×x×Tp + 1);

- переходная функция - H(t) = K×[1-exp(-tx/T)×cos(A×2×p×t)-B×sin(A×2×p×t)],

где A = [(1- x2)1/2]/T, B = x/[(1- x2)1/2];

- весовая функция - W(t) = K×B×exp(-tx/T)×sin(A2pt)/T;

- амплитудно-частотная характеристика –

- А(w) = K/{[(1-T2×w2)2 + 4×x2×T2×w2 ]1/2};

- фазо-частотная характеристика - F(w) = - arctg[2×x×T×w/(1 - T2×w2)],

при 1-T2×w2 = 0: F(w) = - p/2,

при 1-T2×w2 < 0: F(w) = F(w) - p;

- aмплитудно-фазо-частотная характеристика –

W(jw) = (1 - T2×w2)/[(1 - T2×w2)2 + 4×x2×T2×w2] -

- j 2×K×x×T×w/[(1 - T2×w2)2 + 4×x2×T2×w2];

- логарифмическая амплитудно-частотная характеристика -

- L(w) = 20×lg(K) - 20×lg{[(1 - T2×w2)2 + 4×x2×T2×w2]1/2}.

 

8. Реальное интегрирующее звено:

- cтатическая характеристика - нет;

- уравнение движения - T×[d2X(t)/dt2] + dX(t)/dt = K×U(t);

- передаточная функция - W(p) = K/[p(Tp+1)];

- переходная функция - H(t) = K{t - T×[1 - exp(-t/T)]};

- весовая функция - W(t) = K×[1 - exp(-t/T)];

- амплитудно-частотная характеристика - А(w) = K/[w×(1+T2×w2)1/2];

- фазо-частотная характеристика - F(w) = - p - arctg(T×w);

- амплитудно-фазо-частотная характеристика –

- W(jw) = - K×T/(1+T2×w2) - jK/[w×(1+T2×w2)];

- логарифмическая амплитудно-частотная характеристика -

- L(w) = 20×lg(K) - 20×lg[(1+T2×w2)1/2] - 20×lg(w).

 

9. Реальное дифференциирующее звено:

- cтатическая характеристика - нет;

- уравнение движения - T×[dX(t)/dt] + X(t) = K×[dU(t)/dt];

- передаточная функция - W(p) = Kp/(Tp+1);

- переходная функция - H(t) = K×exp(-t/T)/T;

- весовая функция - W(t) = K×d(t)/T - K×exp(-t/T)/T;

- амплитудно-частотная характеристика - А(w) = K×w/[(1+T2×w2)1/2];

- фазо-частотная характеристика - F(w) = p/2 - arctg(T×w);

- амплитудно-фазо-частотная характеристика –

- W(jw) = K×T×w2/(1+T2×w2) + j K×w/(1+T2×w2);

- логарифмическая амплитудно-частотная характеристика -

- L(w) = 20×lg(K) - 20×lg[(1+T2×w2)1/2] + 20×lg(w).

 

10. Неустойчивое апериодическое звено:

- cтатическая характеристика - нет;

- уравнение движения - T×[dX(t)/dt] - X(t) = K×U(t);

- передаточная функция - W(p) = K/(Tp - 1);

- переходная функция - H(t) = K×[exp(t/T) - 1];

- весовая функция - W(t) = K×exp(t/T)/T;

- амплитудно-частотная характеристика - А(w) = K/[(1 + T2×w2)1/2];

- фазо-частотная характеристика - F(w) = arctg (T×w);

- амплитудно-фазо-частотная характеристика –

- W(jw) = -K/(1+T2×w2) – j K×T×w/(1+T2×w2);

- логарифмическая амплитудно-частотная характеристика -

- L(w) = 20×lg(K) - 20×lg[(1+T2×w2)1/2].

 

Методика выполнения работ

1. Лабораторная работа выполняется с помощью лабораторной установки ПК. Состав моделируемых элементов приведен выше.

2. После запуска программы моделирования на экране ПК появляется список моделируемых звеньев.

3. После введения номера соответствующего звена по запросу ПК следует ввести его параметры (К, Т, x).

3. Наблюдение характеристик производится на экране ПК. Результаты наблюдений поместить в протокол.

4. Расчет (при выполнении домашнего задания) ПФ, АФЧХ, ФЧХ и ЛАЧХ осуществляется по соответствующим аналитическим зависимостям с помощью калькулятора.

5. Шаг расчета переходных функций выбирается равным одной десятой постоянной времени (Dh = 0,1×T) исследуемого звена.

6. Шаг расчета частотных характеристик выбирается равным Dw = 0.1/T.

7. Результаты расчетов отображаются в виде графиков.

Варианты заданий

K¯ / Т ® 0,2 0,4 0,6 0,8 1,0 x ¯
0,3           0,1
0,5           0,3
0,7           0,5
0,9           0,7
1,1           0,9

Содержание отчета

В отчете по лабораторной работе отражаются цель работы, исходные данные, основные результаты расчетов характеристик динамических звеньев, выполненных в процессе выполнения домашнего задания, и результаты исследования характеристик динамических звеньев на ПК, выполненного в лабораторных условиях.

Кроме того в отчете должны быть представлены графики исследованных характеристик и оценки расхождения расчетных и экспериментальных данных.

 

Контрольные вопросы

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...