Основные области приложения структурно-вероятностной модели языка
Проблематика квантитативной лингвистики с теоретической и прикладной точек зрения
Название «квантитативная лингвистика» достаточно условно, хотя и довольно широко используется в современной научной литературе. Оно характеризует междисциплинарное направление в прикладных исследованиях, в котором в качестве основного инструмента изучения языка и речи используются количественные или статистические методы анализа. Иногда квантитативная (или количественная) лингвистика противопоставляется комбинаторной лингвистике. В последней доминирующую роль занимает «неколичественный» математический аппарат теория множеств, математическая логика, теория алгоритмов и т.д. Применение количественных методов при описании функционирования языка мало чем отличается от использования аналогичного инструментария в естественных и гуманитарных науках. Привлечение методов измерения и подсчета языковых реализаций позволяет, однако, существенно модифицировать представление о языковой системе и возможностях ее функционирования. В этом отношении квантитативная лингвистика оказывается важнейшим фактором, влияющим на лингвистическую теорию. Например, в сфере грамматики теоретическая лингвистика, как правило, ограничивается констатацией существования в русском языке системы падежей. Со структурной точки зрения этого, быть может, и достаточно. Между тем за рамками обсуждения остается весьма существенная информация о том, как часто используются различные падежи, какова динамка использования различных падежей с течением времени. Исследование такого рода позволило бы выявить тенденции развития падежной системы и на основе этого даже сформулировать гипотезы о будущем состоянии грамматической системы русского языка.
Другой пример. С системной точки зрения в русском, английском и латинском языках имеется форма именительного падежа единственного числа личных местоимений. Однако в английском языке при глаголе эта форма местоимения практически всегда необходима, в русском — местоимение в этих случаях обычно представлено, а в латыни — как правило, отсутствует. Отсутствие достоверных количественных данных об этих языковых явлениях делает структурное описание явно недостаточным. Разумеется, имеются и смешанные случаи. Близкие проблемы возникают и в сфере лексики. Обычные толковые словари не помещают в составе словарной статьи информации о частоте использования той или иной лексемы. Это связано с очень большим объемом работы, который надо проделать, чтобы для каждого слова указать хоть какие-то рамки частотности. Для пользователя словаря такая информация может оказаться очень важной, часто решающей для принятия решения об использовании слова. Ср., например, высокочастотные в публицистике идиомы с головы до ног/с ног до головы (48 вхождений на 21 млн словоупотреблений), целиком и полностью (49 вхождений на 21 млн), на все сто (42 вхождения на 21 млн), ровным счетом, ни больше ни меньше (71 вхождение на 21 млн), ни много, ни мало (133 вхождения на 21 млн) и весьма редкие для газетно-журнального стиля выражения море разливанное (9 вхождений на 21 млн), (и) стар и млад (8 вхождений на 21 млн), разные разности (1 вхождение на 21 млн)). С теоретической точки зрения использование статистических методов в языкознании позволяет дополнить структурную модель языка вероятностным компонентом, то есть создать структурно-вероятностную модель, обладающую значительным объяснительным потенциалом. Эту сторону использования количественных методов следует считать приложением статистики в языкознании. К моделям такого рода относится, например, «модель жизненного цикла слова», предложенная А. А. Поликарповым. Проведенный им квантитативный анализ показал, что в достаточно значительной временной перспективе имеется явная тенденция к увеличению степени абстрактности значений у многозначного слова — чем позже возникает значение, тем оно более абстрактно. Разработанная количественная модель позволяет делать интересные предположение об относительном «возрасте» различных частей речи, тенденций развития лексической системы языка и т.д.
Из приведенного примера видно, что задача построения структурно вероятностной модели функционирования языка относится к теоретическим проблемам лингвистики и входит в компетенцию теории языка. В прикладной же области квантитативная лингвистика представлена прежде всего использованием фрагментов этой модели.
Основные области приложения структурно-вероятностной модели языка
Лингвистический мониторинг функционирования языка. Задача лингвистического мониторинга заключается в выявлении общих особенностей функционирования языковой системы в конкретном типе дискурса (научном, политическом дискурсе, текстах средств массовой информации и т.д.). В качестве предмета лингвистического мониторинга могут выступать такие феномены естественного языка, как типы языковых ошибок, сфера иностранных заимствований, новые слова и значения, новые (креативные, творческие — не конвенциональные) метафоры, тематическое распределение лексики (например, лексика временных и пространственных отношений, лексика выражения чувств и эмоций, спортивная лексика и т.д.), особенности использования в текстах тех или иных грамматических форм, синтаксических конструкций. Технология лингвистического мониторинга основывается на двух важнейших предпосылках: во-первых, на регулярности и периодичности анализируемых данных, и, во-вторых — на достаточно большом объеме привлекаемого материала, на репрезентативности выборки данных. В силу этого лингвистический мониторинг невозможен без соответствующего компьютерного обеспечения. Использование компьютерной технологии позволяет давать оценку исследуемому феномену, выявляя его распределение по времени, по источникам, авторам и т.д.
Информация о статистических закономерностях функционирования языковой системы лежит в основе некоторых методик анализа данных, разрабатываемых в политической лингвистике. К ним относится, в частности, методика контентанализа, используемая для выявления структуры и состояния общественного сознания. При помощи контентанализа появляется возможность по частоте употребления лексем реконструировать, например, ценностные ориентации общества, выявлять актуальные темы публичной политики, оценивать динамику изменения тематики политических дискуссий и т.д.. Компьютерное моделирования языка и речи. Другая важная область прикладного использования знаний о частоте использования тех или иных языковых структур — компьютерная лингвистика. Многие компьютерные программы, связанные с функционированием языка, используют алгоритмы, основывающиеся на данных о частоте употребления фонем, морфем, лексических единиц и синтаксических конструкций. Например, программы автоматической коррекции орфографии содержат словари, как правило, только наиболее частотных лексем. Редкие слова пользователь может вводить в свой индивидуальный словарь. Аналогичные словари используются в программах автоматического распознавания письменного текста и речи (типа Fine Reader). Абсолютная частота появления лексем (особенно терминологической лексики) используется в системах автоматического аннотирования и реферирования. Так, согласно статистико-дистрибутивному методу автоматического индексирования информативными для данного текста считаются скопления слов, расположенных достаточно близко друг от друга, частота которых превосходит некоторую пороговую величину, например, среднюю частоту слов в документе (метод ACSI-Matic). Дешифровка кодированного текста. В процессе дешифровки также могут использоваться данные о частоте употребления графем, морфем и слов, а также их взаимном расположении. К настоящему времени разработаны продуктивные алгоритмы дешифровки, основанные на частоте и дистрибуции элементов кодированного текста; ср. деши-Фровочные алгоритмы Б. В. Сухотина, статистико-комбинаторный метод Н.Д.Андреева. Близки к задачам дешифровки формальные процедуры «открытия» морфемного состава неописанного языка, предложенные 3. Харрисом.
Авторизация атрибуция текста. Проблема авторизации текста относится к числу классических проблем филологического исследования. Часто она рассматривается в рамках «количественной стилистики» — стилеметрии. Авторизация включает как литературную, так и лингвистическую составляющую. В. В. Виноградов в книге «Проблема авторства и теория стилей» сформулировал типологию факторов атрибуции текста. К субъективным факторам он относит: а) субъективно-коммерческие; б) субъективно-конъюнктурные; в) субъективно-эстетические; г) субъективно-психологические; д) субъективно-идеологические факторы. Есть и объективные факторы: а) документально-рукописные (археологические); б) исторические (биографии, свидетельства современников); в) историко-идеологические и сопоставительно-идеологические; г) историко-стилистические; д) художественно-стилистические; е) лингвостилистические. Однако чисто филологическое направление авторизации не позволяет построить объективные операциональные критерии анализа и атрибуции текста. К сожалению, большинство факторов, на которые обращает внимание В. В. Виноградов, плохо формализуемы. Иными словами, разные эксперты, используя одни и те же факторы, могут сделать совершенно различные выводы. Перспектива объективизации экспертного знания была обнаружена в использовании количественных, статистических методов анализа текста. Пионером в этой области стал Н. А. Морозов, перу которого принадлежит опубликованная в 1915 г. работа «Лингвистические спектры. Средство для отличия плагиатов от истинных произведений того или другого известного автора. Стилеметрический этюд». Существенно, что в квантитативном анализе Морозов предлагал опираться не на тематически связанную лексику слова, определяемые спецификой описываемого материала, его предметной и проблемной ориентацией, — а на служебные слова и слова тематически нейтральные. Дело в том, что именно особенности употребления служебных слов, лексем с общей семантикой, не привязанной к тематике художественного произведения, формируют авторский стиль и практически не поддаются имитации. В настоящее время развитие методик авторизации текста наиболее продуктивно проходит в рамках стилеметрии. Лингвистические основания авторизации могут быть различны, но использование количественных методов анализа оказывается неизбежным. Одно из перспективных направлений в этой области — привлечение к авторизации текста теории распознавания образов. При таком подходе стиль описывается как пространство количественно выразимых параметров — средняя длина предложения, количество вложенных синтаксических структур, количество слов в предложении, количество предложений в абзаце и т.д. Далее каждый анализируемый текст выражается через вектор, координаты которого задаются значениями выбранных параметров. Сходство векторов определяет и сходство стилей.
Разрабатываются подходы, основанные на изучении количественных особенностей реализации синтаксических структур, а также на выявлении некоторых особенностей формальной структуры текста, связанных с выражением типов чужой и авторской речи. Соотношение чужой речи (прямой, смешанной, вложенной) с авторской также оказывается стилеобразующим фактором. Эта характеристика стиля отражена в «формально-пунктуационном» методе структуризации текста, который реализован в компьютерной системе DISSKOTE [Гринбаум 1996]. Ниже разбирается пример авторской экспертизы текста, основанный на методике анализа квазисинонимичных лексем.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|