Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Process Control Block и контекст процесса

Для того чтобы операционная система могла выполнять операции над процессами, каждый процесс представляется в ней некоторой структурой данных. Эта структура содержит информацию, специфическую для данного процесса:

− состояние, в котором находится процесс;

− программный счетчик процесса или, другими словами, адрес команды, которая должна быть выполнена для него следующей;

- содержимое регистров процессора;

- данные, необходимые для планирования использования процессора и управления памятью (приоритет процесса, размер и расположение адресного пространства и т. д.);

- учетные данные (идентификационный номер процесса, какой пользователь инициировал его работу, общее время использования процессора данным процессом и т. д.);

- сведения об устройствах ввода-вывода, связанных с процессом (например, какие устройства закреплены за процессом, таблицу открытых файлов).

Ее состав и строение зависят, конечно, от конкретной операционной системы. Во многих операционных системах информация, характеризующая процесс, хранится не в одной, а в нескольких связанных структурах данных. Эти структуры могут иметь различные наименования, содержать дополнительную информацию или, наоборот, лишь часть описанной информации. Для нас это не имеет значения. Для нас важно лишь то, что для любого процесса, находящегося в вычислительной системе, вся информация, необходимая для совершения операций над ним, доступна операционной системе. Для простоты изложения будем считать, что она хранится в одной структуре данных. Мы будем называть ее PCB (Process Control Block) или блоком управления процессом. Блок управления процессом является моделью процесса для операционной системы. Любая операция, производимая операционной системой над процессом, вызывает определенные изменения в PCB. В рамках принятой модели состояний процессов содержимое PCB между операциями остается постоянным.

Информацию, для хранения которой предназначен блок управления процессом, удобно для дальнейшего изложения разделить на две части. Содержимое всех регистров процессора (включая значение программного счетчика) будем называть регистровым контекстом процесса, а все остальное – системным контекстом процесса. Знания регистрового и системного контекстов процесса достаточно для того, чтобы управлять его работой в операционной системе, совершая над ним операции. Однако этого недостаточно для того, чтобы полностью охарактеризовать процесс. Операционную систему не интересует, какими именно вычислениями занимается процесс, т. е. какой код и какие данные находятся в его адресном пространстве. С точки зрения пользователя, наоборот, наибольший интерес представляет содержимое адресного пространства процесса, возможно, наряду с регистровым контекстом определяющее последовательность преобразования данных и полученные результаты. Код и данные, находящиеся в адресном пространстве процесса, будем называть его пользовательским контекстом. Совокупность регистрового, системного и пользовательского контекстов процесса для краткости принято называть просто контекстом процесса. В любой момент времени процесс полностью характеризуется своим контекстом.

Одноразовые операции

Сложный жизненный путь процесса в компьютере начинается с его рождения. Любая операционная система, поддерживающая концепцию процессов, должна обладать средствами для их создания. В очень простых системах (например, в системах, спроектированных для работы только одного конкретного приложения) все процессы могут быть порождены на этапе старта системы. Более сложные операционные системы создают процессы динамически, по мере необходимости. Инициатором рождения нового процесса после старта операционной системы может выступить либо процесс пользователя, совершивший специальный системный вызов, либо сама операционная система, то есть, в конечном итоге, тоже некоторый процесс. Процесс, инициировавший создание нового процесса, принято называть родительским процессом (parent process), а вновь созданный процесс – дочерним процессом (child process). Дочерние процессы могут в свою очередь порождать новые дочерние процессы и т. д., образуя, в общем случае, внутри системы набор генеалогических деревьев процессов – генеалогический лес. Пример генеалогического леса изображен на рис. 2.4.


Рис. 2.4 – Упрощенный генеалогический лес процессов. Стрелочка означает

отношение родитель–ребенок

Следует отметить, что все пользовательские процессы вместе с некоторыми процессами операционной системы принадлежат одному и тому же дереву леса. В ряде вычислительных систем лес вообще вырождается в одно такое дерево.

При рождении процесса система заводит новый PCB с состоянием процесса рождение и начинает его заполнять. Новый процесс получает собственный уникальный идентификационный номер. Поскольку для хранения идентификационного номера процесса в операционной системе отводится ограниченное количество битов, для соблюдения уникальности номеров количество одновременно присутствующих в ней процессов должно быть ограничено. После завершения какого-либо процесса его освободившийся идентификационный номер может быть повторно использован для другого процесса.

Обычно для выполнения своих функций дочерний процесс требует определенные ресурсы: память, файлы, устройства ввода-вывода и т. д. Существует два подхода к их выделению. Новый процесс может получить в свое распоряжение некоторую часть родительских ресурсов, возможно разделяя с процессом-родителем и другими дочерними процессами права на них, или может получить свои ресурсы непосредственно от операционной системы. Информация о выделенных ресурсах заносится в PCB.

После наделения дочернего процесса ресурсами необходимо занести в его адресное пространство программный код, значения данных, установить программный счетчик. Здесь также возможны два решения. В первом случае процесс-ребенок становится дубликатом родительского процесса по регистровому и пользовательскому контекстам, при этом должен существовать способ определения, кто для кого из процессов-двойников является родителем. Во втором случае дочерний процесс загружается новой программой из какого-либо файла. Операционная система Unix разрешает порождение процесса только первым способом; для запуска новой программы необходимо сначала создать копию процесса-родителя, а затем дочерний процесс должен заменить свой пользовательский контекст с помощью специального системного вызова. Операционная система VAX/VMS допускает только второе решение. В Windows NT возможны оба варианта (в различных API).

Порождение нового процесса как дубликата родительского процесса приводит к возможности существования программ (т. е. исполняемых файлов), для работы которых организуется более одного процесса. Возможность замены пользовательского контекста процесса по ходу его работы (т. е. загрузки для исполнения новой программы) приводит к тому, что в рамках одного и того же процесса может последовательно выполняться несколько различных программ.

После того как процесс наделен содержанием, в PCB дописывается оставшаяся информация, и состояние нового процесса изменяется на готовность. Осталось сказать несколько слов о том, как ведут себя родительские процессы после рождения дочерних процессов. Родительский процесс может продолжать свое выполнение одновременно с выполнением дочернего процесса, а может ожидать завершения работы некоторых или всех своих дочерних процессов.

После того как процесс завершил свою работу, операционная система переводит его в состояние закончил исполнение и освобождает все ассоциированные с ним ресурсы, делая соответствующие записи в блоке управления процессом. При этом сам PCB не уничтожается, а остается в системе еще некоторое время. Это связано с тем, что родительский процесс после завершения дочернего процесса может запросить операционную систему о причине "смерти" порожденного им процесса и/или статистическую информацию о его работе. Подобная информация сохраняется в PCB отработавшего процесса до запроса родительского процесса или до конца его деятельности, после чего все следы завершившегося процесса окончательно исчезают из системы. В операционной системе Unix процессы, находящиеся в состоянии закончил исполнение, принято называть процессами-зомби.

Следует заметить, что в ряде операционных систем (например, в VAX/VMS) гибель родительского процесса приводит к завершению работы всех его дочерних процессов. В других операционных системах (например, в Unix) дочерние процессы продолжают свое существование и после окончания работы родительского процесса. При этом возникает необходимость изменения информации в PCB дочерних процессов о породившем их процессе для того, чтобы генеалогический лес процессов оставался целостным. Рассмотрим следующий пример. Пусть процесс с номером 2515 был порожден процессом с номером 2001 и после завершения его работы остается в вычислительной системе неограниченно долго. Тогда не исключено, что номер 2001 будет использован операционной системой повторно для совсем другого процесса. Если не изменить информацию о родительском процессе для процесса 2515, то генеалогический лес процессов окажется некорректным – процесс 2515 будет считать своим родителем новый процесс 2001, а процесс 2001 будет открещиваться от нежданного потомка. Как правило, "осиротевшие" процессы "усыновляются" одним из системных процессов, который порождается при старте операционной системы и функционирует все время, пока она работает.

Многоразовые операции

Одноразовые операции приводят к изменению количества процессов, находящихся под управлением операционной системы, и всегда связаны с выделением или освобождением определенных ресурсов. Многоразовые операции, напротив, не приводят к изменению количества процессов в операционной системе и не обязаны быть связанными с выделением или освобождением ресурсов.

В этом разделе мы кратко опишем действия, которые производит операционная система при выполнении многоразовых операций над процессами. Более подробно эти действия будут рассмотрены далее в соответствующих лекциях.

Запуск процесса. Из числа процессов, находящихся в состоянии готовность, операционная система выбирает один процесс для последующего исполнения. Критерии и алгоритмы такого выбора будут подробно рассмотрены в лекции 3 – "Планирование процессов ". Для избранного процесса операционная система обеспечивает наличие в оперативной памяти информации, необходимой для его дальнейшего выполнения. То, как она это делает, будет в деталях описано в лекциях 8-10. Далее состояние процесса изменяется на исполнение, восстанавливаются значения регистров для данного процесса и управление передается команде, на которую указывает счетчик команд процесса. Все данные, необходимые для восстановления контекста, извлекаются из PCB процесса, над которым совершается операция.

Приостановка процесса. Работа процесса, находящегося в состоянии исполнение, приостанавливается в результате какого-либо прерывания. Процессор автоматически сохраняет счетчик команд и, возможно, один или несколько регистров в стеке исполняемого процесса, а затем передает управление по специальному адресу обработки данного прерывания. На этом деятельность hardware по обработке прерывания завершается. По указанному адресу обычно располагается одна из частей операционной системы. Она сохраняет динамическую часть системного и регистрового контекстов процесса в его PCB, переводит процесс в состояние готовность и приступает к обработке прерывания, то есть к выполнению определенных действий, связанных с возникшим прерыванием.

Блокирование процесса. Процесс блокируется, когда он не может продолжать работу, не дождавшись возникновения какого-либо события в вычислительной системе. Для этого он обращается к операционной системе с помощью определенного системного вызова. Операционная система обрабатывает системный вызов (инициализирует операцию ввода-вывода, добавляет процесс в очередь процессов, дожидающихся освобождения устройства или возникновения события, и т. д.) и, при необходимости сохранив нужную часть контекста процесса в его PCB, переводит процесс из состояния исполнение в состояние ожидание.

Разблокирование процесса. После возникновения в системе какого-либо события операционной системе нужно точно определить, какое именно событие произошло. Затем операционная система проверяет, находился ли некоторый процесс в состоянии ожидание для данного события, и если находился, переводит его в состояние готовность, выполняя необходимые действия, связанные с наступлением события (инициализация операции ввода-вывода для очередного ожидающего процесса и т. п.).

Переключение контекста

До сих пор мы рассматривали операции над процессами изолированно, независимо друг от друга. В действительности же деятельность мультипрограммной операционной системы состоит из цепочек операций, выполняемых над различными процессами, и сопровождается переключением процессора с одного процесса на другой.

Давайте для примера упрощенно рассмотрим, как в реальности может протекать операция разблокирования процесса, ожидающего ввода-вывода (рис. 2.5). При исполнении процессором некоторого процесса (на рисунке – процесс 1) возникает прерывание от устройства ввода-вывода, сигнализирующее об окончании операций на устройстве. Над выполняющимся процессом производится операция приостановки. Далее операционная система разблокирует процесс, инициировавший запрос на ввод-вывод (на рисунке – процесс 2) и осуществляет запуск приостановленного или нового процесса, выбранного при выполнении планирования (на рисунке был выбран разблокированный процесс). Как мы видим, в результате обработки информации об окончании операции ввода-вывода возможна смена процесса, находящегося в состоянии исполнение.


Рис. 2.5 –Выполнение операции разблокирования процесса. Использование термина "код пользователя" не ограничивает общности рисунка только пользовательскими процессами

Для корректного переключения процессора с одного процесса на другой необходимо сохранить контекст исполнявшегося процесса и восстановить контекст процесса, на который будет переключен процессор. Такая процедура сохранения/восстановления работоспособности процессов называется переключением контекста. Время, затраченное на переключение контекста, не используется вычислительной системой для совершения полезной работы и представляет собой накладные расходы, снижающие производительность системы. Оно меняется от машины к машине и обычно колеблется в диапазоне от 1 до 1000 микросекунд. Существенно сократить накладные расходы в современных операционных системах позволяет расширенная модель процессов, включающая в себя понятие threads of execution (нити исполнения или просто нити).

 

Заключение

Понятие процесса характеризует некоторую совокупность набора исполняющихся команд, ассоциированных с ним ресурсов и текущего момента его выполнения, находящуюся под управлением операционной системы. В любой момент процесс полностью описывается своим контекстом, состоящим из регистровой, системной и пользовательской частей. В операционной системе процессы представляются определенной структурой данных – PCB, отражающей содержание регистрового и системного контекстов. Процессы могут находиться в пяти основных состояниях: рождение, готовность, исполнение, ожидание, закончил исполнение. Из состояния в состояние процесс переводится операционной системой в результате выполнения над ним операций. Операционная система может выполнять над процессами следующие операции: создание процесса, завершение процесса, приостановка процесса, запуск процесса, блокирование процесса, разблокирование процесса, изменение приоритета процесса. Между операциями содержимое PCB не изменяется. Деятельность мультипрограммной операционной системы состоит из цепочек перечисленных операций, выполняемых над различными процессами, и сопровождается процедурами сохранения/восстановления работоспособности процессов, т. е. переключением контекста. Переключение контекста не имеет отношения к полезной работе, выполняемой процессами, и время, затраченное на него, сокращает полезное время работы процессора.

 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...