Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Особенности строения митохондриальной ДНК.




Находящаяся в матриксе митохондриальная ДНК представляет собой замкнутую кольцевую двуспиральную молекулу, в клетках человека имеющую размер 16569 нуклеотидных пар, что приблизительно в 105 раз меньше ДНК, локализованной в ядре. В целом митохондриальная ДНК кодирует 2 рРНК, 22 тРНК и 13 субъединиц ферментов дыхательной цепи, что составляет не более половины обнаруживаемых в ней белков. В частности, под контролем митохондрального генома кодируются семь субъединиц АТФ-синтетазы, три субъединицы цитохромоксидазы и одна субъединица убихинол-цитохром- с -редуктазы. При этом все белки, кроме одного, две рибосомные и шесть тРНК транскрибируются с более тяжёлой (наружной) цепи ДНК, а 14 других тРНК и один белок транскрибируются с более лёгкой (внутренней) цепи.

На этом фоне геном митохондрий растений значительно больше и может достигать 370000 нуклеотидных пар, что примерно в 20 раз больше описанного выше генома митохондрий человека. Количество генов здесь также примерно в 7 раз больше, что сопровождается появлением в митохондриях растений дополнительных путей электронного транспорта, не сопряжённых с синтезом АТФ.

Митохондриальная ДНК реплицируется в интерфазе, что частично синхронизировано с репликацией ДНК в ядре. Во время же клеточного цикла митохондрии делятся надвое путём перетяжки, образование которой начинается с кольцевой бороздки на внутренней митохондриальной мембране. Детальное изучение нуклеотидной последовательности митохондриального генома позволило установить то, что в митохондриях животных и грибов нередки отклонения от универсального генетического кода. Так, в митохондриях человека кодон ТАТ вместо изолейцина в стандартном коде кодирует аминокислоту метионин, кодоны ТСТ и ТСС, обычно кодирующие аргинин, являются стоп-кодонами, а кодон АСТ, в стандартном коде являющийся стоп-кодоном, кодирует аминокислоту метионин. Что касается митохондрий растений, то, по-видимому, они используют универсальный генетический код. Другой чертой митохондрий является особенность узнавания кодонов тРНК, заключающаяся в том, что одна подобная молекула способна узнавать не один, но сразу три или четыре кодона. Указанная особенность снижает значимость третьего нуклеотида в кодоне и приводит к тому, что митохондрии требуется меньшее разнообразие типов тРНК. При этом достаточным количеством оказываются всего 22 различных тРНК.

Имея собственный генетический аппарат, митохондрия обладает и собственной белоксинтезирующей системой, особенностью которой в клетках животных и грибов являются очень маленькие рибосомы, характеризуемые коэффициентом седиментации 55S, что даже ниже аналогичного показателя у 70s-рибосом прокариотического типа. При этом две большие рибосомные РНК также имеют меньшие размеры, чем у прокариот, а малая рРНК вообще отсутствует. В митохондриях растений, напротив, рибосомы более сходны с прокариотическими по размерам и строению.

Свойства и функции ДНК.

ДНК, или дезоксирибонуклеиновой кислоты является основным наследственного материала, присутствующего во всех клетках организма и в основном предусматривает синяя печать ячейки функций, роста, воспроизводства и смерти. Структура ДНК, под названием double-stranded спиральной структуры была впервые описана Уотсон и Крик в 1953 году.

От затем огромный прогресс был достигнут в синтез, последовательности и манипуляции ДНК. ДНК в эти дни может быть виртуализации или проанализированы для мелочей и даже генов может быть вставлена чтобы вызвать изменения в ДНК функции и структуры.

Фун-ции

Основное назначение наследственного материала — это хранение наследственной информации, на базе которой формируется фенотип. Большинство признаков и свойств организма обусловлено синтезом белков, выполняющих различные функции, Таким образом, в наследственном материале должна быть записана информация о структуре чрезвычайно разнообразных белковых молекул, специфика которых зависит от качественного и количественного состава аминокислот, а также от порядка расположения их в пептидной цепи. Следовательно, в молекулах нуклеиновых кислот должен быть закодирован аминокислотный состав белков.
Еще в начале 50-х годов было высказано предположение о способе записи генетической информации, при котором кодирование отдельных аминокислот в молекуле белка должно осуществлятья с помощью определенных сочетаний четырех различных нуклеотидов в молекуле ДНК. Для шифровки более чем 20 аминокислот необходимое количество сочетаний обеспечивается только триплетным кодом, т. е. кодом, включающим три рядом стоящих нуклеотида. В этом случае число сочетаний из четырех азотистых оснований по три равно 41= 64. Предположение о триплетности генетического кода позднее получило экспериментальное подтверждение, а за период с 1961 по 1964 г. был выяснен шифр, с помощью которого в молекулах нуклеиновых кислот записывается порядок аминокислот в пептиде.
Из табл. 6 видно, что из 64 триплетов 61 триплет кодирует ту или иную аминокислоту, причем отдельные аминокислоты шифруются более чем одним триплетом, или кодоном (фенилаланин, лейцин, валин, серии и т. д.). Несколько триплетов не кодируют аминокислот, и их функции связывают с обозначением концевого участка белковой молекулы.
Считывание информации, записанной в молекуле нуклеиновой кислоты, осуществляется последовательно, ко-Дон за кодоном, так, что каждый нуклеотид входит в состав лишь одного триплета.
Изучение генетического кода у живых организмов с разным уровнем организации показало универсальность этого механизма записи информации в живой природе.
Таким образом, исследованиями середины XX века раскрыт механизм записи наследственной информации в молекулах нуклеиновых кислот с помощью биологического кода, который характеризуется следующими свойствами: а) триплетностью — аминокислоты шифруются триплетами нуклеотидов — кодонами; б) специфичностью — каждый триплет кодирует лишь определенную аминокислоту; в) универсальностью — у всех живых организмов кодирование одних и тех же аминокислот осуществляется одинаковыми кодонами; г) вырожденностью — многие аминокислоты шифруются более чем одним триплетом; д) неперекрываемостью — считывание информации осуществляется последовательно триплет за триплетом: ААГЦТЦАГЦЦАТ.

Помимо записи и хранения биологической информации, функцией материала наследственности являются ее воспроизведение и передача новому поколению в процессе размножения клеток и организмов. Эта функция наследственного материала осуществляется молекулами ДНК в процессе ее редупликации, т. е. абсолютно точного воспроизведения структуры, благодаря осуществлению принципа комплементарности (см. 2.1).
Наконец, третьей функцией наследственного материала, представленного молекулами ДНК, является обеспечение специфических процессов в ходе реализации заключенной в ней информации. Эта функция осуществляется при участии различных видов РНК, обеспечивающих процесс трансляции, т. е. сборку белковой молекулы, происходящий в цитоплазме на основе информации, поступившей из ядра (см. 2.4). В ходе реализации наследственной информации, хранящейся в виде молекул ДНК в хромосомах ядра, выделяют несколько этапов.
1. Считывание информации с молекулы ДНК в процессе синтеза иРНК — транскрипция, которая осуществляется на одной из цепей двойной спирали ДНК— кодогенной цепи по принципу комплементарности (см. 2.4).
2. Подготовка продукта транскрипции к выходу в цитоплазму — созревание иРНК.
3. Сборка на рибосомах пептидной цепочки из аминокислот на основании информации, записанной в молекуле иРНК, с участием транспортных тРНК — трансляция (см. 2.4).
4. Формирование вторичной, третичной и четвертичной структур белка, что соответствует формированию функционирующего белка (простой признак).
5. Формирование сложного признака в результате участия продуктов нескольких генов (белков-ферментов или других белков) в биохимических процессах.

Структура двойной спирали ДНК, скрепленная с помощью только водородных связей, может быть легко разрушена. Разрыв водородных связей между полинуклеотидными цепями ДНК можно осуществить в сильнощелочных растворах (при рН > 12,5) или при нагревании. После этого цепи ДНК полностью разделяются. Такой процесс называют денатурацией или плавлением ДНК.

При денатурации изменяются некоторые физические свойства ДНК, например ее оптическая плотность. Азотистые основания поглощают свет в ультрафиолетовой области (с максимумом, близким к 260 нм). ДНК поглощает свет почти на 40 % меньше, чем смесь свободных нуклеотидов того же состава. Это явление называют гипохромным эффектом, а обусловлено оно взаимодействием оснований при их расположении в двойной спирали.

Любое отклонение от двухцепочечного состояния оказывает влияние на изменение величины этого эффекта, т.е. происходит сдвиг оптической плотности в сторону значения, характерного для свободных оснований. Таким образом, за денатурацией ДНК можно наблюдать по изменению ее оптической плотности.

При нагревании ДНК среднюю температуру диапазона, при котором происходит разделение цепей ДНК, называют точкой плавления и обозначают как Т пл. В растворе Т пл обычно лежит в интервале 85-95 °С. Кривая плавления ДНК всегда имеет одну и ту же форму, но ее положение на температурной шкале зависит от состава оснований и условий денатурации (рис. 1). Пары G-C, соединенные тремя водородными связями, являются более тугоплавкими, чем пары А-Т, имеющие две водородные связи, поэтому при увеличении содержания G-C-nap значение Т пл возрастает. ДНК, на 40 % состоящая из G-C (характерно для генома млекопитающих), денатурирует при Т пл около 87 °С, тогда как ДНК, содержащая 60 % G-C, имеет Т пл
около 95 °С.

На температуру денатурации ДНК (кроме состава оснований) оказывает влияние ионная сила раствора. При этом чем выше концентрация моновалентных катионов, тем выше Т пл. Значение Т пл также сильно меняется при добавлении к раствору ДНК таких веществ, как формамид (амид муравьиной кислоты HCONH2), который
дестабилизирует водородные связи. Его присутствие позволяет снизить Т пл, до 40 °С.

Процесс денатурации является обратимым. Явление восстановления структуры двойной спирали, исходя из двух разделений комплементарных цепей, называют ренатурацией ДНК. Для осуществления ренатурации, как правило, достаточно тудить раствор денатурированной ДНК.

В ренатурации участвуют две комплементарные последовап ности, которые были разделены при денатурации. Однако ренатл ровать могут любые комплементарные последовательности, кото способны образовать двухцепочечную структуру. Если совместно. отжигают одноцепочечные ДНК, происходящие из различных точников, то формирование двухцепочечной структуры ДНК называют гибридизацией.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...