Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Последовательное соединение диодов.




Если требуется получить большие значения выпрямленного напряжения, применяют последовательное соединение диодов. Построение преобразовательной установки с одиночными диодами в этом случае не представляется возможным из-за недопустимо высокого обратного напряжения, которое будет приложено к силовым полупроводниковым приборам. Например, в выпрямительных установках электровозов ВЛ80 применяют диоды 7-го и 8-го классов, рассчитанные на номинальное напряжение 700…800 В. Однако номинальное напряжение на выходе выпрямительной установки составляет 1450... 1650 В, а обратное напряжение в переходных процессах может достигать 4000 В. Число последовательно соединенных диодов в каждой фазе выпрямительной схемы с нулевым выводом или в каждом плече мостовой схемы выбирают так, чтобы напряжение на одном диоде при нормальном рабочем режиме не превышало его номинального повторяющегося обратного напряжения. Перенапряжения на отдельных диодах, включенных последовательно, вызываются различными сопротивлениями отдельных диодов и различием их вольтамперных характеристик. Во избежание больших потерь энергии рекомендуется специально подбирать последовательно включаемые диоды по их вольтамперным характеристикам: диоды должны иметь одинаковый класс, близкие обратные ветви характеристики и одинаковые температурные коэффициенты. Лавинные диоды, которые допускают большие значения обратных токов, соединяют последовательно без шунтирующих резисторов. Если напряжение на каком-либо диоде, достигает напряжения стабилизации, при котором происходит лавинный пробой, то дальнейшего увеличения обратного напряжения на данном диоде не происходит. Поэтому для лавинных диодов запас максимально допустимого напряжения составляет 1, 3... 1, 5 Uoбpmах вместо 2... 3 Uобрmах для обычных диодов.

Параллельное соединение диодов .

Для получения большого выпрямленного тока применяется параллельное соединение диодов. Число параллельно включенных диодов выбирают так, чтобы ток, проходящий через каждый диод, не превышал номинального тока. При параллельном соединении нескольких диодов из-за различия прямых ветвей их вольтамперных характеристик распределение тока между диодами оказывается неравномерным. Больший ток протекает через диод, имеющий меньшее падение напряжения, т. е. более крутую вольтамперную характеристику Такая неравномерность в распределении тока нагрузки приводит к недопустимому нагреву диода и требует снижения мощности преобразователя. Для сглаживания неравномерности в распределении токов по отдельным параллельным ветвям специально подбирают диоды по их прямым вольтамперным характеристикам. При этом стремятся, чтобы параллельно включенные диоды имели близкие по величине падения напряжения (разность не более 0, 02 В). Но даже и в этом случае неравномерность в распределении токов составляет около 20%. На это значение приходится снижать общий ток Id выпрямительной установки.

 

Электровоз переменного тока имеет в своем составе преобразователь, служащий вторичным источником электропитания тяговых двигателей. Поэтому он сложнее и дороже электровоза постоянного тока. Однако повышение напряжения контактной сети с 3, 3 кВ на постоянном токе до 25 кВ на переменном токе позволяет втрое сохранить расход меди на контактную сеть и вдвое уменьшить число тяговых подстанций.
Регулируемый выпрямитель позволяет в широких пределах изменять напряжение на тяговых двигателях и, тем самым, согласовать силу тяги с профилем пути. Кроме того, значительно повышается надежность преобразователя в инверторном режиме.

Пуск и регулирование скорости тяговых двигателей осуществляется путем изменения напряжения, подводимого к якорю. При этом практическое применение нашли следующие способы регулирования:


1. Контактное переключение выводов вторичной обмотки с большим числом ступеней. Этот способ нашел применение на электровозах ВЛ60К, ВЛ80К, ВЛ80Г, ВЛ80С.
2. Бесконтактное переключение выводов вторичной обмотки с тиристорным ступенчатым регулированием. Электровозы ВЛ80Р, ВЛ84, ВЛ85, ЭС5К.

Полупроводники – кремний, германий, селен. На внешнем электронном слое имеют по 4-е валентных электрона, которые образуют ковалентные связи с электронами соседних атомов, то есть каждый валентный электрон вращается одновременно вокруг двух ядер атомов. При этом вокруг ядра каждого атома вращается по 8 электронов: 4 своих и 4 соседних.

Внешний электронный слой из 8-и электронов является заполненным, а электроны, образующие ковалентные связи, прочно удерживаются ядрами атомов – тока нет. Значит, при нормальных условиях полупроводники являются изоляторами. Но под действием повышенной температуры, или при воздействии внешнего электрического поля, напряжения, ковалентные связи разрываются, образуются свободные электроны, которые являются носителями тока и полупроводник становится проводником электрического тока.

Электронная проводимость – это когда в полупроводник внедряют атомы пятивалентной примеси – сурьма, фосфор, мышьяк. Четыре валентных электрона атома примеси образуют ковалентные связи с атомами полупроводника, а для пятого электрона пара отсутствует. Пятые электроны являются свободными, они слабо притягиваются ядрами атомов. Если полупроводник с такой примесью включить в электрическую цепь, то под действием электрического поля свободные электроны начнут передвигаться и потечет электрический ток. Пластина с такой примесью будет проводить ток в обоих направлениях. Основными носителями тока являются свободные электроны, а пластина обладает электронной, или «n» проводимостью и электрически нейтральна.

Дырочная проводимость – когда в чистый полупроводник внедряют атомы трехвалентной примеси – алюминий, бор, индий. Три валентных электрона атома образуют ковалентные связи с атомами полупроводника, а для образования 4-й связи не хватает электрона у атома примеси. Незаполненная ковалентная связь называется «дыркой». Если такую пластину поместить в электрическое поле, то под его воздействием электроны из имеющихся ковалентных связей будут заполнять «дырку», передвигаясь от «-» к «+» источника, а дырка будет приближаться к «-» источника и заполнятся электронами, которые имеются в избытке на «-» источника. Одновременно, со стороны «+» источника электроны будут вырываться из ковалентных связей, образовывая новые «дырки». Такая пластина обладает дырочной или «р» проводимостью, также электрически нейтральна и пропускает ток в обоих направлениях.

Запирающий слой. Если совместить две полупроводниковые пластины с электронной и дырочной проводимостью, то под действием внутренних сил диффузии электроны с «n» слоя переходят в «р» слой, а «дырки» наоборот, при этом на границе перехода, в «р» слое, образуется избыток электронов, то есть отрицательный заряд, а на границе «n» слоя – недостаток электронов и положительный заряд. За счет разности зарядов на границе «р-n» перехода образуется напряжение, приблизительно равное 1 Вольт – это запирающий слой.

Прямое напряжение. Если в пластинах с «р-n» переходом «+» источника соединить с «р» слоем или анодом, а «-» источника с «n» слоем или катодом, то при этом напряжение источника направлено против напряжения запирающего слоя. Запирающий слой под действием напряжения источника уничтожается и через «р-n» переход потечет прямой ток для которого сопротивление перехода очень мало. При снятии прямого напряжения, запирающий слой восстанавливается.

Обратное напряжение. При соединении «+» источника с «n» слоем или катодом, а «-» источника с «р» слоем или анодом, под действием напряжения источника свободные электроны с «n» слоя притягиваются к «+» источника, увеличивая положительный потенциал «n» слоя, одновременно электроны увеличивают отрицательный потенциал «р» слоя. Обратное напряжение совпадает с напряжением запирающего слоя и увеличивает его.

Вольтамперная характеристика – это графическая зависимость тока, проходящего через вентиль, от величины приложенного к нему напряжения. Так как к вентилю прикладывается напряжение в прямом и в обратном направлениях, соответственно, получают прямую и обратную ветвь вольт – амперной характеристики (ВАХ).

По прямой ветви ВАХ определяется, при номинальном прямом токе, группа и подгруппа вентиля, которая зависит от сопротивления прямому току и учитывается, когда вентили соединяются параллельно, чтобы распределит прямой ток равномерно по ветвям. При рассмотрении обратной ветви ВАХ определяют класс вентиля. Для этого сначала определяют напряжение загиба Uзаг – это максимальное обратное напряжение, которое выдерживает вентиль не пробиваясь. По значению Uзаг определяется допустимое напряжение Uдоп. Для обычных вентилей Uдоп = 0, 5 Uзаг – это максимальное значение напряжение электрической цепи, в которую может быть установлен данный вентиль. Учитывается, когда вентили в схеме соединяются последовательно.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...