Элементы цепи синусоидального тока. Послед. Соед. Резистивного и индуктивного элементов.
⇐ ПредыдущаяСтр 9 из 9 Пусть в ветви на рис. 12 . Тогда где , причем пределы изменения . Уравнению (7) можно поставить в соответствие соотношение ,
графически может быть представлено треугольником сопротивлений (см. рис. 14), который подобен треугольнику напряжений.
Элементы цепи синусоидального тока. Послед. Соед. Резистивного и емкостного элементов.
Опуская промежуточные выкладки, с использованием соотношений (2) и (4) для ветви на рис. 15 можно записать
где , причем пределы изменения .
Элементы цепи синусоидального тока. Параллельное соединение резистивного и индуктивного элементов. Для цепи на рис. 21 можно записать ; , где [См] – активная проводимость; , где [См] – реактивная проводимость катушки индуктивности. Векторной диаграмме токов (рис. 22) для данной цепи соответствует уравнение в комплексной форме , где ; - комплексная проводимость; . Треугольник проводимостей, подобный треугольнику токов, приведен на рис. 23.
.
Элементы цепи синусоидального тока. Параллельное соединение резистивного и емкостного элементов. Для цепи на рис. 18 имеют место соотношения: ; , где [См] – активная проводимость; , где [См] – реактивная проводимость конденсатора. Векторная диаграмма токов для данной цепи, называемая треугольником токов, приведена на рис. 19. Ей соответствует уравнение в комплексной форме ,где ;
- комплексная проводимость; . Треугольник проводимостей, подобный треугольнику токов, приведен на рис. 20. Для комплексного сопротивления цепи на рис. 18 можно записать . Необходимо отметить, что полученный результат аналогичен известному из курса физики выражению для эквивалентного сопротивления двух параллельно соединенных резисторов. Закон Ома для участка цепи с источником ЭДС.
Объединяя оба случая, получим
или для постоянного тока
Формулы (1) и (2) являются аналитическим выражением закона Ома для участка цепи с источником ЭДС, согласно которому ток на участке цепи с источником ЭДС равен алгебраической сумме напряжения на зажимах участка цепи и ЭДС, деленной на сопротивление участка. В случае переменного тока все указанные величины суть комплексы. При этом ЭДС и напряжение берут со знаком “+”, если их направление совпадает с выбранным направлением тока, и со знаком “-”, если их направление противоположно направлению тока.
Метод контурных токов. Идея метода контурных токов: уравнения составляются только по второму закону Кирхгофа, но не для действительных, а для воображаемых токов, циркулирующих по замкнутым контурам, т.е. в случае выбора главных контуров равных токам ветвей связи. Число уравнений равно числу независимых контуров, т.е. числу ветвей связи графа . Первый закон Кирхгофа выполняется автоматически. Контуры можно выбирать произвольно, лишь бы их число было равно и чтобы каждый новый контур содержал хотя бы одну ветвь, не входящую в предыдущие. Такие контуры называются независимыми. Их выбор облегчает использование топологических понятий дерева и ветвей связи.Направления истинных и контурных токов выбираются произвольно. Выбор положительных направлений перед началом расчета может не определять действительные направления токов в цепи. Если в результате расчета какой-либо из токов, как и при использовании уравнений по законам Кирхгофа, получится со знаком “-”, это означает, что его истинное направление противоположно.Пусть имеем схему по рис. 3.Выразим токи ветвей через контурные токи: ; ; ; ; .Обойдя контур aeda, по второму закону Кирхгофа имеем .Поскольку ,то .Таким образом, получили уравнение для первого контура относительно контурных токов. Аналогично можно составить уравнения для второго, третьего и четвертого контуров: совместно с первым решить их относительно контурных токов и затем по уравнениям, связывающим контурные токи и токи ветвей, найти последние.Однако данная система уравнений может быть составлена формальным путем:
17.Метод узловых потенциалов. Данный метод вытекает из первого закона Кирхгофа. В качестве неизвестных принимаются потенциалы узлов, по найденным значениям которых с помощью закона Ома для участка цепи с источником ЭДС затем находят токи в ветвях. Поскольку потенциал – величина относительная, потенциал одного из узлов (любого) принимается равным нулю. Таким образом, число неизвестных потенциалов, а следовательно, и число уравнений равно , т.е. числу ветвей дерева .Пусть имеем схему по рис. 4, в которой примем .Допустим, что и известны. Тогда значения токов на основании закона Ома для участка цепи с источником ЭДС Запишем уравнение по первому закону Кирхгофа для узла а: и подставим значения входящих в него токов, определенных выше: .Сгруппировав соответствующие члены, получим: .Аналогично можно записать для узла b: .Как и по методу контурных токов, система уравнений по методу узловых потенциалов может быть составлена формальным путем. При этом необходимо руководствоваться следующими правилами:1. В левой части i- гоуравнения записывается со знаком “+”потенциал i- го узла, для которого составляется данное i- е уравнение, умноженный на сумму проводимостей ветвей, присоединенных к данному i- му узлу, и со знаком “-”потенциал соседних узлов, каждый из которых умножен на сумму проводимостей ветвей, присоединенных к i- му и k- му узлам.Из сказанного следует, что все члены , стоящие на главной диагонали в левой части системы уравнений, записываются со знаком “+”, а все остальные – со знаком “-”, причем . Последнее равенство по аналогии с методом контурных токов обеспечивает симметрию коэффициентов уравнений относительно главной диагонали.2. В правой части i- гоуравнения записывается так называемый узловой ток , равный сумме произведений ЭДС ветвей, подходящих к i- му узлу, и проводимостей этих ветвей. При этом член суммы записывается со знаком “+”, если соответствующая ЭДС направлена к i- му узлу, в противном случае ставится знак “-”. Если в подходящих к i- му узлу ветвях содержатся источники тока, то знаки токов источников токов, входящих в узловой ток простыми слагаемыми, определяются аналогично.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|