Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Конструкция, принцип действия лл низкого давл.




Люминесцентные лампы (флуоресцентные) – это газоразрядные лампы низкого давления.

Люминесцентные лампы представляют собой разрядные источники света низкого давления, в которых ультрафиолетовое излучение ртутного разряда преобразуется люминофором в длинноволновое видимое излучение. Люминофорами называются твердые или жидкие вещества, способные излучать свет под действием различного рода возбуждения.

По характеру разряда в люминесцентных лампах классифицируются на люминесцентные лампы дугового разряда с горячими катодами, лампы тлеющего разряда с холодными катодами и лампы вихревого разряда без электродов.

Люминесцентные лампы дугового разряда можно подразделить на осветительные люминесцентные лампы общего и специального назначения. Люминесцентные лампы общего назначения предназначены для освещения в различных областях применения.

Люминесцентная лампа низкого давления представляет собой цилиндрическую стеклянную колбу 2 (рис. 3.1), на концах которой в цоколях 1 смонтированы вольфрамовые спиральные электроды 6. На внутреннюю поверхность по всей ее длине нанесен тонкий слой твердого кристаллического порошкообразного вещества – люминофора 4. Люминофором является галофосфат кальция, дозированный марганцем и сурьмой. Изменяя пропорцию состава люминофора можно получить люминесцентные лампы с различной цветностью излучения светового потока.

Рис. 3.1. Внешний вид и разрез люминесцентной лампы:

1 – цоколь; 2 – колба; 3 – ртутные пары; 4 – слой люминофора; 5 – контактные штырьки цоколя; 6 – спиральный электрод

После откачки воздуха при изготовлении лампы внутрь колбы вводится капля ртути (20…30 мг), которая испаряется при работе лампы. Также вводится небольшое количество чистого газа – аргона, для уменьшения процесса испарения вольфрамовых электродов и ускорения зажигания лампы.

Выпускаются люминесцентные лампы мощностью 20, 30, 40, 80 Вт с колбой диаметром 40 мм и улучшенной конструкции 18, 36, 58 Вт с колбой диаметром 26 мм.

Люминесцентные лампы включаются в электрическую сеть с помощью пускорегулирующей аппаратуры (ПРА), для зажигания и обеспечения нормального режима работы. Это усложняет конструкцию, а следовательно, стоимость осветительных приборов и некоторую сложность в эксплуатации, что безусловно является недостатками люминесцентных ламп. К недостаткам люминесцентных ламп можно отнести сложность утилизации из-за наличия в колбе ртути, ненадежная работа в температурных диапазонах до 15°С и выше 25°С, относительно низкая стабильность светового потока в течение срока службы. Кроме указанных недостатков люминесцентные лампы обладают рядом достоинств, к которым следует отнести: линейный источник света, что позволяет создать более равномерное освещение и эстетическое оформление осветительной установки; высокая световая отдача до 100 лм/Вт; большой срок службы до 10000…12000 ч; низкая яркость и температура поверхности колбы; качественная цветопередача (у отдельных серий ламп);

относительно невысокая себестоимость изготовления.

Для зажигания люминесцентной лампы и ее нормальной работы требуется электромагнитный пускорегулирующий аппарат (ЭмПРА) или электронный пускорегулирующий аппарат (ЭПРА), в международной практике их принято называть, соответственно «Балластом» или «Электронным балластом».

В зависимости от схемы включения ламп применяют ЭмПРА стартерные и бесстартерные.

Стартерные ЭмПРА состоят из дросселя, стартера (зажигателя) и конденсаторов.

Стартер служит для автоматического предварительного подогрева электродов и зажигания лампы. Представляет собой лампу тлеющего разряда, состоящую из стеклянного баллона 2, наполненного инертным газом – неоном (рис. 2.6, а). В стеклянном баллоне вмонтированы два электрода: один металлический, другой биметаллический. Между электродами имеется зазор 2…3 мм.

Дроссель, представляет собой катушку индуктивности с сердечником из листовой электротехнической стали. Дроссель имеет индуктивность 4…5 Гн. Такая большая величина индуктивности, как правило, достигается за счет стального сердечника с высокой магнитной проницаемостью. Дроссель создает механические вибрации светильника на частоте 50 Гц с соответствующим звуковым давлением на той частоте. Кроме того, эта индуктивность приводит к значительному сдвигу по фазе между током и напряжением и снижению коэффициента мощности.

Серьезным недостатком схемы питания на частоте питающей сети являются пульсации светового потока лампы из-за низкой инерционности люминофора, что приводит к стробоскопическому эффекту при выполнении ряда производственных операций с вращающимися механизмами.

На рис. 3.2 приведена типовая схема стартерного зажигания люминесцентной лампы, включаемой в сеть 220 В.

В момент включения лампы выключателем SA, ее электроды и стартер оказываются включенными на полное напряжение сети. Напряжения сети для зажигания лампы не достаточно, но достаточно, чтобы вызвать в стартере разряд. В стартере возникает тлеющий разряд, под действием которого биметаллический электрод нагревается и, изгибаясь, замыкается с другим электродом неоновой лампы. Цепь стартера замыкается, и начинается процесс нагрева электродов лампы. По окончании разряда в стартере биметаллический электрод охлаждается, выпрямляется и разрывает электрическую цепь. А так как в электрическую цепь последовательно с лампой включена индуктивная нагрузка (дроссель), то в момент размыкания возникает импульс повышенного напряжения, вызывающий мощный дуговой разряд в лампе и зажигает ее.

 

а стартер (неоновая лампа тлеющего разряда): 1 – металлический электрод; 2 – стеклянный баллон 3 – защитная оболочка; 4 -биметаллический электрод; б – схема принципиальная: 1 – стартер; 2 – лампа; 3 –балластный дроссель

Напряжение, подводимое к электродам лампы, воздействует на свободные электроны и ионы, находящиеся в газе, заставляя их перемещаться. На своем пути движущиеся электроны и ионы сталкиваются с атомами газа и срывают с их орбит другие электроны, которые лавинообразно увеличиваю поток движущихся частиц. Срыв электронов со своих орбит сопровождается выделением квантов света. При этом резонансное излучение газов, наполняющих трубку (пары ртути, либо пары натрия), лежит в ультрафиолетовой области спектра и поэтому разряд не может быть источником видимого излучения. Поэтому на внутреннюю поверхность трубки наносится люминофор, преобразующий ультрафиолетовое излучение газа – наполнителя трубки – в излучение видимого спектра. Люминофор должен иметь достаточно высокую инерционность для того, чтобы снизить мерцание света при питании лампы от промышленной сети.

Стартерная схема зажигания относительно проста и дешева и поэтому широко распространена, но вызывает дополнительный расход электроэнергии около 20 % из-за включения в схему дросселя.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...