Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Нарушения биосинтеза и распада белков в органах и тканях

НАРУШЕНИЯ БЕЛКОВОГО ОБМЕНА

Белковый обмен занимает особое место в многообразных превращениях веществ, характерных для всех живых организмов. Биологическое значение белков определяется их многообразными функциями. Белки определяют микро– и макроструктуру отдельных субклеточных образований, клеток, органов и целостного организма, т.е. выполняют пластическую функцию. Белковый обмен обеспечивает непрерывность воспроизводства и обновления белковых тел организма. Энгельс охарактеризовал белки как материальный носитель жизни и подчеркнул динамичность белкового обмена. Он писал: "Жизнь есть способ существования белковых тел, и этот способ существования состоит по своему существу в постоянном самообновлении химических составных частей этих тел".

Помимо пластической роли, белки выполняют уникальную, функциональную, т.е. каталитическую роль. Этой функцией не наделены ни углеводы, ни жиры.

Белки (соответственно и продукты их гидролиза – аминокислоты) принимают непосредственное участие в биосинтезе рада гормонов, биологически активных веществ и медиаторов. К ним относятся либерины и статины гипоталамуса, инсулин, ангиотензин, кинины, гистамин, серотонин и др. В последние годы стали известны пептиды, снижающие болевую чувствительность – эндорфины.

Белки (особенно альбумины) поддерживают онкотическое давление крови. Являясь гидрофильными коллоидами, они связывают определенное количество воды и удерживают ее в кровеносном русле.

Белки участвуют в сложной системе регуляции гомеостаза. Они поддерживают рН крови, представляя собой так называемый белковый буфер.

Главную роль в процессах мышечного сокращения и расслабления выполняют актин и миозин – специфические белки мышечной ткани. Сократительная функция присуща не только мышечным белкам, но и белкам ряда субклеточных структур, что обеспечивает тончайшие процессы жизнедеятельности клеток.

Основную функцию защиты в организме выполняет иммунная система» которая обеспечивает синтез специфических защитных белков–иммуноглобулинов. В качестве другого примера защитной роли можно привести участие ряда белков крови в процессе свертывания,

Белки выполняют транспортную функцию: они соединяются с различными веществами (гормонами, витаминами, жирами, медью, железом и др.), обеспечивая их доставку в ткани–мишени.

При определенных условиях, например, голодании, сахарном диабете белки могут использоваться как энергетический материал.

Таким образом, белковый обмен координирует, регулирует и интегрирует процессы обмена веществ в организме, подчиняя его сохранения вида, непрерывности жизни. Состояние белкового обмена определяется множеством экзо– и эндогенных факторов. Любые отклонения от нормального физиологического состояния организма отражаются на белковом обмене. Поэтому знание закономерностей этих изменений при конкретном патологическом процессе имеет важное значение для правильного понимания механизмов болезни и выбора тактики терапевтических мероприятий.

Нарушения биосинтеза и распада белков в органах и тканях

 

Белковый обмен обеспечивает непрерывность воспроизводства и обновления белков организма. Показано, что в среднем каждые 3 недели половина белковых компонентов человеческого тела полностью обновляется путем распада и ресинтеза. При этом общая скорость синтеза белков в организме в состоянии азотистого равновесия достигает 500 г в день, т.е. почти в. 5 раз превосходит среднее потребление с пищей. Естественно, что такой результат, может быть обеспечен только за счет повторного использования аминокислотных предшественников и продуктов распада белков. Белки органов и тканей нуждаются в постоянном обновлении. В конечном счете, животным необходим не белок как таковой, а определенные аминокислоты, освобождающиеся при его гидролизе. Известно, что у детей продолжительный недостаток гистидина приводит к нарушению образования гемоглобина к возникновению экземы. Дефицит основной аминокислоты аргинина не сказывается на нормальном росте, но может привести к нарушению сперматогенеза.

На величины потребностей в определенных аминокислотах существенно влияет состав общей смеси аминокислот, получаемой организмом; так, например, потребность в фенилаланине и метионине значительно уменьшается при достаточном обеспечении тирозином и цистеином, так как фенилаланин превращается в организме в заменимую аминокислоту тирозин, а метионин метаболизируется с образованием заменимой аминокислоты цистеина. Если в эксперименте молодые крысы получают лишь минимальные количества незаменимых аминокислот, то поразительным стимулом для роста животных оказывается введение в рацион некоторых заменимых аминокислот, например, глутаминовой кислоты и аргинина. В то же время введение в рацион больших количеств других аминокислот, особенно глицина, может привести к значительному замедлению роста. Для оптимального синтеза белков, следовательно, необходима сбалансированная смесь аминокислот.

В основе развития ряда патологических состояний в организме лежат нарушения динамического равновесия двух фаз метаболизма: анаболизма и катаболизма белковых структур. Патологические изменения в анаболической фазе могут возникать вследствие дефектов генетического кода и нарушений отдельных этапов биосинтеза белков: репликации, транскрипции, трансляции и посттрансляционных модификаций молекул. Чаше всего следствием таких нарушений является дефицит одного иди нескольких белков, что в зависимости от их функциональной значимости приводит к развитию различных клинических проявлений. Так, например, при сахарном диабете снижается белок–синтезирующая активность рибосом, что, по–видимому, связано с нарушениями процесса инициации. Установлено, что некоторые виды наследственных анемий человека – талассемии – характеризуются нарушением процесса трансляции β–мРНК или нехваткой белковых факторов трансляции. Есть данные, свидетельствующие о том, что прикрепление мРНК к рибосомам, а также процессу транслокации могут тормозиться дифтерийным токсином. К ингибиторам инициации можно отнести и ряд широко используемых антибактериальных антибиотиков, тормозящих присоединение аминоацил–тРНК на всех стадиях трансляции. К ним относятся антибиотики тетрациклинового ряда, аминогликозидные антибиотики (стрептомицин, неомицин, канамицин и др.). Образование аминоацил–тРНК и белка может быть подавлено препаратами салициловой кислоты. Показано, что афлатоксины – продукты жизнедеятельности гриба Aspergillus flavus, подавляют синтез ДНК и митоз клеток. Установлено, что некоторые антибиотики (рифамицины, рифампицин) нарушают матричный синтез РНК, подавляя активность ДНК–зависимой РНК–полимеразы.

В подавляющем большинстве случаев не представляется возможным говорить об изолированных нарушениях анаболической фазы белкового обмена, так как они обязательно сочетаются с нарушениями катаболизма. Это наблюдается при общем и белковом голодании, дефиците отдельных незаменимых аминокислот, изменениях в последовательности поступления аминокислот, так как белковый синтез подчинен закону "все или ничего". Выраженный дисбаланс процессов синтеза и распада белков имеет место при нарушении гормональной регуляции и влияний центральной нервной системы.


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...