Источники пространственных данных
В качестве источников пространственных данных выступают аналоговые или цифровые данные, которые служат основой для создания моделей пространственных данных. Существует несколько основных типов источников пространственных данных: 1. Картографические источники, в т.ч. карты, планы, атласы, схемы и другие картографические изображения, нанесенные на бумагу, картон, пленку, пластик или иные носители. Такие данные должны быть вначале переведены в электронный вид с помощью сканирования или фотографирования. Полученные растровые изображения могут быть непосредственно использованы в качестве растрового слоя карты в ГИС, либо их можно векторизовать – перевести в векторный вид. Кроме современного метода «сканирование–векторизация», ранее широко (сейчас уже достаточно редко) использовался метод цифрования (дигитализации), когда векторные данные непосредственно «скалывались» специальным пером с твердой копии карты, уложенной поверх дигитайзера (цифрового планшета). 2. Данные дистанционного зондирования (ДДЗ), включая аэро- и космоснимки в видимом, инфракрасном, ультрафиолетовом, радиодиапазоне или во многих диапазонах волн сразу; результаты лазерного сканирования поверхности земли, а также другие данные, полученные неконтактным способом. 3. Данные полевых изысканий, полученные с использованием различных геодезических приборов (теодолиты, нивелиры, электронные тахеометры, лазерные сканеры) и приборы глобальной спутниковой навигации (GPS, ГЛОНАСС, Galileo). 4. Данные натурных наблюдений на гидрометеорологических и иных постах и станциях. Как правило, эти данные характеризуют распределение полей некоторых явлений на Земле, таких как температура, осадки, скорость и направление ветра и др. Эти данные обычно передаются в ГИС в виде точечных объектов (с координатами места наблюдения), которым заданы в виде атрибутов измеренные значения.
5. Статистические данные ведомственной и государственной статистики. Такие данные обычно помещаются в ГИС в виде атрибутов пространственных объектов. Как правило, источники пространственных данных не могут быть непосредственно переданы в геоинформационную систему для использования. Векторизация Процедура векторизации предназначена для перевода существующих картографических изображений из растрового в векторный вид. Предполагается, что с помощью сканера или цифрового фотоаппарата получено растровое изображение, которое предстоит векторизовать с помощью компьютера. В настоящее время массовое применение векторизации в ГИС – это во многом вынужденное и временное явление. Со временем роль векторизации в подготовке данных для ГИС будет падать, т.к. уже сейчас почти все вновь создаваемые карты изготавливаются с помощью компьютеров сразу в векторной форме, а потому в будущем для всех бумажных карт будут существовать исходные векторные данные, на основе которых они были созданы. Процедура векторизации разбивается на несколько основных этапов: 1. Геометрическая коррекция снимка. Необходимость этого этапа может возникать, например, из-за небольших погрешностей в работе механики сканера, что приводит к неравномерному движению сканирующей головки по противоположным краям сканируемого листа. В результате прямоугольник на карте может превратиться в трапецию в памяти компьютера. Если ввод данных в компьютер выполнялся с помощью цифрового фотоаппарата, то на этом этапе исправляются оптические искажения, вызванные оптикой объектива фотоаппарата. 2. Привязка к требуемой картографической проекции. На данном этапе определяется использованная в исходном изображении картографическая проекция и на растре отмечается некоторое число характерных точек, координаты которых можно точно установить из каких-то соображений. Такими характерными точками обычно выступают кресты координатной или картографической сетки, и только при их недостаточном количестве – другие точечные объекты.
3. Склейка различных растров в единое полотно для сплошного покрытия территории. Для выполнения склейки на смежных растровых изображениях находятся общие объекты (например, дорога, проходящая через несколько листов карты), координаты которых должны быть совмещены на карте. После этого программа векторизации подбирает оптимальное преобразование (обычно кусочно-линейное или кусочно-квадратичное), позволяющее достичь заданных требований с минимальными искажениями растра. По окончании первых трех этапов растр обычно преобразуется в новый, в котором исправлены все геометрические и проекционные искажения, а также данный растр увязан с другими, смежными. 4. Подготовка к векторизации. На данном этапе обычно последовательно выполняется корректировка яркости и контраста (гистограммным способом), удаление различных шумов (удаление очень мелких пятен, устранение маленьких разрывов линий и др.). Кроме того, в связи с тем, что для печати карт обычно применяется небольшое количество различных цветов, каждый из которых используется для обозначения различного рода пространственных сущностей, на данном этапе растр может быть разделен по цветам на несколько отдельных растров.личных с тем, что для печати карт обычно используется небольшое количство угой растрй. а слозданаонную систему Например, на картах железные дороги могут быть отмечены черным цветом, красным цветом – автомобильные дороги государственного значения, а синим – автомобильные дороги местного значения. Поэтому для векторизации транспортных сетей имеет смысл разделить по цветам исходный растр на 3 разных. 5. Собственно векторизация. Существует 3 способа векторизации: ручной, полуавтоматический и автоматический. При ручном способе пользователь самостоятельно отмечает координаты фигур пространственных объектов поверх растра с помощью компьютерной мыши. При полуавтоматическом способе пользователь отмечает объект, который предстоит векторизовать, а система предлагает векторный вариант (линию или полигон), который может быть принят пользователем, отвергнут или модифицирован. В автоматическом режиме программа анализирует сразу весь растр и выделяет все имеющиеся объекты. Главным недостатком автоматического режима является невысокая точность распознавания. Это связано как непосредственно с математическими и алгоритмическими проблемами решения задачи распознавания, так и с проблемой каскадных ошибок, когда один неверно распознанный объект может повлиять на распознавание следующего объекта. Поэтому после автоматического распознавания оператор вынужден визуально полностью проверять полученные результаты и вносить коррективы. В итоге общее время такой работы может превзойти время полуавтоматической векторизации. Именно поэтому на практике наибольшее распространение получили программы полуавтоматической векторизации, позволяющие гибко управлять процессом перевода растра в векторный вид.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|