Расчет каскада с высокочастотной индуктивной коррекцией
РАСЧЕТ НЕКОРРЕКТИРОВАННОГО КАСКАДА С ОБЩИМ ИСТОКОМ 3.1 ОКОНЕЧНЫЙ КАСКАД
Принципиальная схема некорректированного усилительного каскада приведена на рисунке 3.1,а, эквивалентная схема по переменному току - на рисунке 3.1,б.
Рисунок 3.1 В соответствии с [6], коэффициент усиления каскада в области верхних частот можно описать выражением: , (3.1) где ; (3.2) ; (3.3) ; (3.4) ; (3.5) ; - текущая круговая частота. При заданном уровне частотных искажений
верхняя частота fВ полосы пропускания каскада равна:
где Входное сопротивление каскада на ПТ, без учета цепей смещения, определяется входной емкостью: . (3.8) Пример 3.1. Рассчитать fB, RC, CВХ каскада, приведенного на рисунке 3.1, при использовании транзистора КП907Б (СЗИ=20 пФ; СЗС=5 пФ; ССИ=12 пФ; RВЫХ=150 Ом; S=200 мА/В [7]) и условий: RН=50 Ом; YB=0,9; K0=4. Решение. По известным K0 и S из (3.2) найдем: RЭ=20 Ом. Зная RВЫХ, RН и RЭ, из (3.3) определим: RС = 43 Ом. По (3.4) и (3.5) рассчитаем: С0=17 пФ; =
3.2 ПРОМЕЖУТОЧНЫЙ КАСКАД
Принципиальная схема каскада приведена на рисунке 3.2,а, эквивалентная схема по переменному току - на рисунке 3.2,б.
Рисунок 3.2 Коэффициент усиления каскада в области верхних частот описывается выражением (3.1), в котором значения RЭ и С0 рассчитываются по формулам: ; (3.9) , (3.10) где СВХ – входная емкость нагружающего каскада. Значения fB и СВХ каскада рассчитываются по соотношениям (3.7) и (3.8). Пример 3.2. Рассчитать fB, RC, CВХ каскада, приведенного на рисунке 3.2, при использовании транзистора КП907Б (данные транзистора в примере 3.1) и условий: YB=0.9; K0=4; входная емкость нагружающего каскада - из примера 3.1. Решение. По известным K0 и S из (3.2) найдем: RЭ=20 Ом. Зная RЭ и RВЫХ, из (3.9) определим: RC=23 Ом. По (3.10) и (3.4) рассчитаем С0=62 пФ; =
3.3 РАСЧЕТ ИСКАЖЕНИЙ, ВНОСИМЫХ ВХОДНОЙ ЦЕПЬЮ
Принципиальная схема входной цепи каскада приведена на рисунке 3.3,а, эквивалентная схема по переменному току - на рисунке 3.3,б.
Рисунок 3.3 Коэффициент передачи входной цепи в области верхних частот описывается выражением [6]: , где ; (3.11) ; (3.12) ; СВХ – входная емкость каскада на ПТ. Значение fB входной цепи рассчитывается по формуле (3.7). Пример 3.3. Рассчитать K0 и fB входной цепи, приведенной на рисунке 3.3, при условиях: RГ=50 Ом; RЗ=1 МОм; YB=0,9; CВХ – из примера 3.1. Решение. По (3.11) найдем: K0=1, по (3.12) определим: =
РАСЧЕТ КАСКАДА С ВЫСОКОЧАСТОТНОЙ ИНДУКТИВНОЙ КОРРЕКЦИЕЙ Принципиальная схема каскада с высокочастотной индуктивной коррекцией приведена на рисунке 4.1,а, эквивалентная схема по переменному току - на рисунке 4.1,б.
Рисунок 4.1
Коэффициент усиления каскада в области верхних частот можно описать выражением [6]: , где K0=SRЭ; (4.1) ; ; ; ; ; . Значение, соответствующее оптимальной по Брауде амплитудно-частотной характеристике (АЧХ) [6], рассчитывается по формуле: . (4.2) При заданном значении YB верхняя частота полосы пропускания каскада равна: . (4.3) Входная емкость каскада определяется соотношением (3.8). При работе каскада в качестве предоконечного все перечисленные выше соотношения справедливы. Однако RЭ, R0 и С0 принимаются равными: , (4.4) где СВХ – входная емкость оконечного каскада. Пример 4.1. Рассчитать fB, LC, RC, CВХ каскада, приведенного на рисунке 4.1, при использовании транзистора КП907Б (данные транзистора - в примере 3.1) и условий: YB=0,9; K0=4; каскад работает в качестве предоконечного; входная емкость нагружающего каскада - из примера 3.1. Решение. По известным K0 и S из (4.1) найдем: RЭ=20 Ом. Далее по (4.4) получим: RC=23 Ом; R0= 150 Ом; C0=62 пФ; =
5 РАСЧЕТ КАСКАДА С ИСТОКОВОЙ КОРРЕКЦИЕЙ
Принципиальная схема каскада с истоковой коррекцией приведена на рисунке 5.1,а, эквивалентная схема по переменному току - на рисунке 5.1,б.
Рисунок 5.1 Коэффициент усиления каскада в области верхних частот можно описать выражением [6]: , где K0=SRЭ/F; (5.1) ; (5.2) ; ; ; . Значение С1опт, соответствующее оптимальной по Брауде АЧХ, рассчитывается по формуле: . (5.3) При заданном значении YB верхняя частота полосы пропускания каскада равна: . (5.4) Входная емкость каскада определяется соотношением:
. (5.5) При работе каскада в качестве предоконечного все перечисленные выше соотношения справедливы. Однако RЭ и С0 принимаются равными: , (5.6) где СВХ – входная емкость оконечного каскада. Пример 5.1. Рассчитать fB, R1, С1, СВХ каскада, приведенного на рисунке 5.1, при использовании транзистора КП907Б (данные транзистора - в примере 3.1) и условий: YB=0,9; K0=4; каскад работает в качестве предоконечного; входная емкость нагрузочного каскада - из примера 3.1. Решение. По известным K0, S, RЭ из (5.1), (5.2) найдем: F=7,5; R1=32,5 Ом. Далее получим: С0=62 пФ; =
6 РАСЧЕТ ВХОДНОЙ КОРРЕКТИРУЮЩЕЙ ЦЕПИ
Из приведенных выше примеров расчета видно, что наибольшие искажения АЧХ обусловлены входной цепью. Для расширения полосы пропускания входных цепей усилителей на ПТ в [8] предложено использовать схему, приведенную на рисунке 6.1.
Рисунок 6.1 Коэффициент передачи входной цепи в области верхних частот можно описать выражением: , где ; (6.1) ; ; ; ; СВХ – входная емкость каскада на ПТ. Значение L3опт, соответствующее оптимальной по Брауде АЧХ, рассчитывается по формуле: . (6.2) При заданном значении YB и расчете LЗопт по (6.2) верхняя частота полосы пропускания входной цепи равна:
Пример 6.1. Рассчитать fB, RЗ, LЗ входной цепи, приведенной на рисунке 6.1, при условиях: YB=0,9; RГ=50 Ом; СВХ – из примера 3.1; допустимое уменьшение К0 за счет введения корректирующей цепи – 2 раза. Решение. Из условия допустимого уменьшения К0 и соотношения (6.1) найдем: RЗ=50 Ом. Подставляя известные СВХ, RГ и RЗ в (6.2), получим: LЗопт=37,5 нГн. Далее определим: =
7 РАСЧЕТ ВЫХОДНОЙ КОРРЕКТИРУЮЩЕЙ ЦЕПИ
В рассматриваемых выше усилительных каскадах расширение полосы пропускания связано с потерей части выходной мощности в резисторах корректирующих цепей (КЦ) либо цепей обратной связи. От выходных каскадов усилителей требуется, как правило, получение максимально возможной выходной мощности в заданной полосе частот. Из теории усилителей известно [9], что для выполнения указанного требования необходимо реализовать ощущаемое сопротивление нагрузки для внутреннего генератора транзистора равным постоянной величине во всем рабочем диапазоне частот. Этого можно достигнуть, включив выходную емкость транзистора в фильтр нижних частот, используемый в качестве выходной КЦ. Схема включения выходной КЦ приведена на рисунке 7.1.
Рисунок 7.1 При работе выходного каскада без выходной КЦ модуль коэффициента отражения ощущаемого сопротивления нагрузки внутреннего генератора транзистора равен [9]: . (7.1) Уменьшение выходной мощности относительно максимального значения, обусловленное наличием CВЫХ, составляет величину: , (7.2) где – максимальное значение выходной мощности на частоте при условии равенства нулю СВЫХ; – максимальное значение выходной мощности на частоте при наличии СВЫХ. Использование фильтра нижних частот в качестве выходной КЦ при одновременном расчете элементов L1, C1 по методике Фано [9] позволяет обеспечить минимально возможное, соответствующее заданным CВЫХ и fB, значение максимальной величины модуля коэффициента отражения в полосе частот от нуля до fB. В таблице 7.1 приведены нормированные значения элементов L1, C1, CВЫХ, рассчитанные по методике Фано, а также коэффициент, определяющий величину ощущаемого сопротивления нагрузки RОЩ, относительно которого вычисляется [9]. Таблица 7.1
Истинные значения элементов рассчитываются по формулам:
Расчет частотных искажений, вносимых выходной цепью оконечного каскада, приведен в разделе 3.1. При использовании выходной КЦ частотные искажения, вносимые выходной цепью, определяются соотношением:
. (7.4) Коэффициент усиления каскада с выходной КЦ определяется выражением (3.2). Пример 7.1. Рассчитать выходную КЦ для усилительного каскада на транзисторе КП907Б (данные транзистора - в примере 3.1) при RН=50 Ом, fB=200 МГц. Определить RОЩ, уменьшение выходной мощности на частоте fB и уровень частотных искажений, вносимых выходной цепью при использовании КЦ и без нее. Решение. Найдем нормированное значение СВЫХ: = == 1,07. Ближайшее значение коэффициента
8 РАСЧЕТ ДИССИПАТИВНОЙ МЕЖКАСКАДНОЙ КОРРЕКТИРУЮЩЕЙ ЦЕПИ ВТОРОГО ПОРЯДКА
Принципиальная схема усилителя с межкаскадной КЦ второго порядка приведена на рисунке 8.1,а, эквивалентная схема по переменному току - на рисунке 8.1,б. [10].
Рисунок 8.1 Коэффициент усиления каскада на транзисторе T1 в области верхних частот можно описать выражением [11, 12]: , (8.1) где K0=SRЭ; (8.2) ; ; ; ; – сопротивление сток-исток транзистора T1;;;;; – нормированные относительно и значения элементов,,,,; =; В таблице 8.1 приведены нормированные значения элементов Таблица 8.1 получена с помощью методики проектирования согласующе-выравнивающих цепей транзисторных усилителей, предполагающей составление и решение системы компонентных уравнений [13], и методики синтеза прототипа передаточной характеристики, обеспечивающего максимальный коэффициент усиления каскада при заданной допустимой неравномерности АЧХ в заданной полосе частот [14]. Таблица 8.1
При известных значениях,,,, расчет межкаскадной КЦ состоит из следующих этапов. Вычисление. Нормирование значения по формуле:. Нахождение по таблице 8.1 ближайшего к вычисленному табличного значения. Определение по таблице 8.1 соответствующих значений При использовании рассматриваемой КЦ в качестве входной принимается равной нулю, принимается равным, а коэффициент передачи входной цепи на средних частотах рассчитывается по формуле (3.11). В случае необходимости построения нормированной частотной характеристики проектируемого усилительного каскада значения,,, Пример 8.1. Рассчитать межкаскадную КЦ усилительного каскада, приведенного на рисунке 8.1, его и при использовании транзисторов КП907Б (данные транзистора - в примере 3.1) и условий: fB=100 МГц; входная емкость нагружающего каскада - из примера 3.1; допустимая неравномерность АЧХ - Решение. По известным, и найдем: = =
10 РАСЧЕТ ДИССИПАТИВНОЙ МЕЖКАСКАДНОЙ КОРРЕКТИРУЮЩЕЙ ЦЕПИ ЧЕТВЕРТОГО ПОРЯДКА
Принципиальная схема усилителя с межкаскадной корректирующей цепью четвертого порядка [15] приведена на рисунке 9.1,а, эквивалентная схема по переменному току - на рисунке 9.1,б.
Рисунок 9.1 Несмотря на то, что КЦ содержит пять корректирующих элементов, конструктивно ее выполнение может оказаться проще выполнения КЦ второго порядка. Коэффициент усиления каскада на транзисторе T1 в области верхних частот можно описать выражением [14]: , (9.1) где ; (9.2) ; ; ; ;
; RВЫХ1 – сопротивление сток-исток транзистора T1; СВХ2 – входная емкость транзистора T2;,,,, – нормированные относительно и значения элементов L1, R2, C3, C4, L5, соответствующие преобразованной схеме КЦ, в которой значение CВЫХ1 равно нулю, а значение СВХ2 равно бесконечности; СВЫХ1 – выходная емкость транзистора T1;; – нормированная частота; – текущая круговая частота; – высшая круговая частота полосы пропускания разрабатываемого усилителя. В таблице 9.1 приведены нормированные значения элементов L1, R2, C3, C4, L5, вычисленные для случая реализации усилительного каскада с различным наклоном АЧХ, лежащим в пределах Таблица 9.1 получена с помощью методики проектирования согласующе-выравнивающих цепей транзисторных усилителей, предполагающей составление и решение систем компонентных уравнений [13], и методики синтеза прототипа передаточной характеристики, обеспечивающего максимальный коэффициент усиления каскада при заданной допустимой неравномерности АЧХ в заданной полосе частот [14]. Таблица 9.1
Для расчета нормированных значений элементов L1, R2, C3, C4, L5, обеспечивающих заданную форму АЧХ с учетом реальных нормированных значений СВЫХ1 и СВХ2, следует воспользоваться формулами пересчета [14]:
где СВЫХ1Н, СВХ2Н – нормированные относительно RВЫХ1 и При известных значениях При использовании рассматриваемой КЦ в качестве входной СВЫХ1 принимается равной нулю, RВЫХ1 принимается равным RГ, а коэффициент передачи входной цепи на средних частотах рассчитывается по формуле: . (9.4) В случае необходимости построения нормированной частотной характеристики проектируемого усилительного каскада значения Пример 9.1. Рассчитать межкаскадную КЦ усилителя, приведенного на рисунке 9.1, его K0 и СВХ при использовании транзистора КП907Б (данные транзистора - в примере 3.1) и условий: fB=100 МГц; входная емкость нагружающего каскада - из примера 3.1; допустимая неравномерность АЧХ - Решение. Из таблицы 9.1 для неравномерности АЧХ + 0,5 дБ и наклона АЧХ, равного 0 дБ, имеем:
ЛИТЕРАТУРА
1. Перельман Б.Л. Новые транзисторы: Справочник. – М.: Солон, 1996. 2. Петухов В.М. Полевые и высокочастотные биполярные транзисторы средней и большой мощности и их зарубежные аналоги: Справочник. – М.: КУБК-а, 1997. 3. Полевые транзисторы: Справочник. – Faber. STM. Publications, 1997. 4. Шварц Н.З. Усилители СВЧ на полевых транзисторах. – М.: Радио и связь, 1987. 5. Никифоров В.В., Кулиш Т.Т., Шевнин И.В. К проектированию широкополосных усилителей мощности КВ- УКВ- диапазона на мощных МДП-транзисторах // В сб.: Полупроводниковые приборы в технике связи / Под ред. И.Ф. Николаевского. – М.: Радио и связь. -1993.- Вып. 23. 6. Мамонкин И.Г. Усилительные устройства: Учебное пособие для вузов. – М.: Связь, 1977. 7. Никифоров В.В., Максимчук А.А. Определение элементов эквивалентной схемы мощных МДП-транзисторов // В сб.: Полупроводниковая электроника в технике связи / Под ред. И.Ф. Николаевского. – М.: Радио и связь.- 1985.- Вып. 25. 8. Никифоров В.В., Терентьев С.Ю. Синтез цепей коррекции широкополосных усилителей мощности с применением методов нелинейного программирования // В сб.: Полупроводниковая электроника в технике связи / Под ред. И.Ф. Николаевского. – М.: Радио и связь. - 1986. - Вып. 26. 9. Широкополосные радиопередающие устройства / Алексеев О.В., Головков А.А., Полевой В.В., Соловьев А.А. / Под ред. О.В. Алексеева. – М.: Связь, 1978. 10. Титов А.А., Ильюшенко В.Н., Авдоченко Б.И., Обихвостов В.Д. Широкополосный усилитель мощности для работы на несогласованную нагрузку // ПТЭ. - 1996. - №2. - С.68-69. 11. Шварц Н.З. Линейные транзисторные усилители СВЧ. – М.: Сов. радио, 1980. 12. Бабак Л.И., Дьячко А.Н., Дергунов С.А. Расчет цепей коррекции мощных сверхширокополосных транзисторных СВЧ-усилителей // Полупроводниковая электроника в технике связи /Под ред. И.Ф. Николаевского. – М.: Радио и связь. - 1988. - Вып. 27. 13. Бабак Л.И., Шевцов А.Н., Юсупов Р.Р. Пакет программ автоматизированного расчета транзисторных широкополосных и импульсных УВЧ- и СВЧ-усилителей // Электронная техника. Сер. СВЧ-техника. - 1993. - №3. - С.60-63. 14. Титов А.А. Расчет диссипативной межкаскадной корректирующей цепи широкополосного усилителя мощности // Радиотехника. - 1989. - №2. - С.88-90. 15. Жаворонков В.И., Изгагин Л.Н., Шварц Н.З. Транзисторный усилитель СВЧ с полосой пропускания МГц // Приборы и техника эксперимента. – 1972. - №3. - С.134-135.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|