Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Трахея. Стенка трахеи образована

слизистой,

подслизистой,

фиброзно-хрящевой и

адвентициальной оболочками.

Слизистая оболочка состоит из

· однослойного многорядного мерцательного эпителия и

· тонкого собственного слоя.

Эпителий трахеи содержит различные типы клеток.

Собственный слой слизистой оболочки содержит многочисленные эластические волокна и немного слизистых желёз. Здесь встречаются отдельные лимфоциты и лимфатические фолликулы.

Мышечный слой отсутствует.

Подслизистая оболочка. Границей между слизистой и подслизистой оболочками служит уплотнённая пластинка переплетённых эластических волокон. В подслизистой оболочке расположено множество кровеносных сосудов и секреторных отделов слизистых и белковослизистых желёз.

Фиброзно-хрящевая оболочка представлена пластинками в виде незамкнутых колец гиалинового хряща, окружённого тонкой фиброзной оболочкой - надхрящницей. Концы колец соединены пучками соединительнотканных волокон и ГМК. Соседние кольца соединяет между собой плотная соединительная ткань (переплетённые коллагеновые и отдельные эластические волокна), переходящая в надхрящницу колец.

Бронхи. Бронхиальное дерево (arbor bronchialis) включает:

*главные бронхи – правый и левый;

* долевые бронхи (крупные бронхи 1-го порядка);

*зональные бронхи (крупные бронхи 2-го порядка);

*сегментарные и субсегментарные бронхи (средние бронхи 3, 4 и 5-го порядка);

*мелкие бронхи (6…15-го порядка);

* терминальные (конечные) бронхиолы (bronchioli terminales).

 

За терминальными бронхиолами начинаются респираторные отделы легкого, выполняющие газообменную функцию.

Строение бронхов сходно со строением трахеи, но имеются и определённые различия.

 

Слизистая оболочка бронхов, в отличие от трахеи, обладает мышечным слоем. Этот слой состоит из ГМК, расположенных в виде двух противоположно направленных (по часовой и против часовой стрелки) спиралей. Сокращение ГМК приводит к образованию продольных складок слизистой оболочки бронха.

Собственный слой слизистой оболочки содержит множество эластических волокон, организованных в виде нескольких и идущих параллельно длинных лент. Ленты переходят в эластические компоненты терминальных бронхиол.

Подслизистая оболочка содержит слизистые и белково-слизистые железы. Железы располагаются группами, особенно в тех участках, где отсутствует хрящ. В бронхах малого калибра железы отсутствуют.

Фиброзно-хрящевая оболочка. Хрящи в виде незамкнутых колец, присутствующие в главных бронхах, в крупных внутрилёгочных бронхах сменяются хрящевыми пластинками неправильной формы, а затем островками хрящевой ткани (бронхи среднего калибра). Пространства между хрящами заполнены соединительной тканью, переходящей в надхрящницу. В бронхах малого калибра хрящевой ткани нет. Адвентициальная оболочка - соединительная ткань, переходящая в междолевую и междольковую соединительную ткань паренхимы лёгкого.

Бронхиолы. Бронхиолы отличаются от бронхов по ряду признаков: их диаметр значительно меньше и составляет от 0,5 до 1 мм.

Эпителий слизистой оболочки - однорядный цилиндрический мерцательный; его высота меньше, чем в бронхах. В эпителии более крупных бр онхиол преобладают реснитчатые клетки, между которыми расположены бронхиолярные экзокриноциты. В стенке бронхиол отсутствуют хрящи и железы.

Таким образом, стенка бронхиол состоит из следующих элементов:

· однорядного цилиндрического (кубического) эпителия,

· тонкого и эластичного собственного слоя,

· мышечного слоя слизистой оболочки и

· наружной соединительной ткани.

· Всего образуется 20 генераций бронхиол, мельчайшими из которых являются терминальные бронхиолы.

 

Респираторный отдел. Респираторный отдел лёгкого осуществляет функцию внешнего дыхани я - газообмен между двумя средами - внешней и внутренней. С понятием респираторный отдел связаны представления об ацинусе и лёгочной дольке.

Ацинус. Респираторный отдел представляет собой совокупность ацинусов. Ацинус начинается респираторной бронхиолой первого порядка, которая дихотомически делится на респираторные бронхиолы второго, а затем третьего порядков.

Каждая респираторная бронхиола третьего порядка, в свою очередь, подразделяется на альвеолярные ходы, переходящие в преддверие и далее - в альвеолярные мешоч ки.

В просвет респираторной бронхиолы и альвеолярных ходов открываются альвеолы. Преддверие и альвеолярные мешочки фактически являются пустотами, образованными альвеолами.

 

Лёгочная долька. Лёгочная долька состоит из 12-18 ацинусов, разделённых тонкими прослойками соединительной ткани. Неполные фиброзные междольковые перегородки отделяют друг от друга соседние дольки.

 

Альвеолы. Альвеолы (рис. 13-10) выстланы однослойным эпителием, расположенным на базальной мембране. Клеточный состав эпителия - пневмоциты типов I и II. Клетки образуют между собой плотные контакты. Альвеолярная поверхность покрыта тонким слоем воды и сурфактанта.

Пневмоциты типа I (респираторные пневмоциты) покрывают почти 95% альвеолярной поверхности. Это плоские клетки с уплощёнными выростам и; выросты соседних клеток перекрывают друг друга, смещаясь при вдохе и выдохе. По периферии цитоплазмы имеется много пиноцитозных пузырьков. Клетки не способны делиться. Функция пневмоцитов типа I - участие в газообмене. Эти клетки входят в состав аэрогематического барьера.

 

Пневмоциты типа II вырабатывают, накапливают и секретируют компоненты поверхностноактивного вещества - сурфактанта. Клетки имеют кубическую форму. Они встроены между пневмоцитами типа I, возвышаясь над последними; изредка образуют группы из 2-3 клеток. На апикальной поверхности пневмоциты типа II имеют микроворсинки. Особенностью этих клеток является присутствие в цитоплазме пластинчатых телец диаметром 0,2-2 мкм. Окружённые мембраной тельца состоят из концентрических слоёв липидов и белков. Пластинчатые тельца пневмоцитов типа II относят к лизосомоподобным органеллам, накапливающим вновь синтезированные и рециклированные компоненты сурфактанта.

 

Межальвеолярная перегородка содержит капилляры, заключённые в сеть эластических волокон, окружающих альвеолы. Эндотелий альвеолярного капилляра - уплощённые клетки, содержащие в цитоплазме пиноцитозные пузырьки.

В межальвеолярных перегородках имеются небольшие отверстия - альвеолярные поры. Эти поры создают возможность для проникновения воздуха из одной альвеолы в другую, что облегчает воздухообмен. Через поры в межальвеолярных перегородках происходит также миграция альвеолярных макрофагов.

Аэрогематический барьер. Между полостью альвеолы и просветом капилляра происходит путём простой диффузии газообмен. Чем меньше структур между полостью альвеолы и просветом капилляра, тем эффективнее диффузия. Газообмен происходит через уплощённую цитоплазму пневмоцитов типа I и эндотелиальных клеток капилляров.

В состав барьера также входят базальная мембрана, общая для эпителия альвеолы и эндотелия капилляра типа I (0,2 мкм), общая базальная мембрана (0,1 мкм), уплощённая часть эндотелиальной клетки капилляра (0,2 мкм). В сумме это составляет около 0,5 мкм.

Снаружи к альвеолам вплотную примыкают кровеносные капилляры, образующие густую сеть. Капилляры окружены эластическими волокнами, оплетающими альвеолы в виде пучков. Альвеола выстлана однослойным эпителием. Цитоплазма большинства эпителиальных клеток максимально уплощена (пневмоциты типа I).

В ней присутствует множество пиноцитозных пузырьков. Пиноцитозные пузырьки в изобилии имеются также в плоских эндотелиальных клетках капилляров. Между пневмоцитами типа I располагаются клетки кубической формы - пневмоциты типа II. Для них характерно наличие в цитоплазме пластинчатых телец, содержащих сурфактант.

Сурфактант секретируется в полость альвеолы и образует на поверхности тонкого слоя воды, покрывающего альвеолярный эпителий, мономолекулярную плёнку. Из межальвеолярных перегородок в просвет альвеол могут мигрировать макрофаги. Перемещаясь по поверхности альвеолы, они образуют многочисленные цитоплазматические отростки, с помощью которых захватывают посторонние частицы, поступающие с воздухом.

Интерстициальное пространство. Утолщённый участок стенки альвеолы, где не происходит слияния базальных мембран эндотелия капилляра и альвеолярного эпителия (так называемая «толстая сторона» альвеолярного капилляра) состоит из соединительной ткани и содержит коллагеновые и эластические волокна, создающие структурный каркас альвеолярной стенки, протеогликаны, фибробласты, липофибробласты и миофибробласты, тучные клетки, макрофаги, лимфоциты. Такие участки называют интерстициальным пространством (интерстицием).

 

Сурфактант. Основное количество сурфактанта вырабатывается у плода после 32-й недели беременности, достигая максимального количества к 35-й неделе. До рождения образуется избыток сурфактанта. После рождения этот избыток удаляется альвеолярными макрофагами. Сурфактант регулярно инактивируется и конвертируется в мелкие поверхностно-неактивные агрегаты. Примерно 70-80% таких агрегатов захватывается пневмоцитами типа II и попадает в фаголизосомы. Альвеолярные макрофаги фагоцитируют остальной пул мелких агрегатов сурфактанта.

Состав сурфактанта. Лёгочный сурфактант - эмульсия фосфолипидов, белков и углеводов; 80% составляют глицерофосфолипиды, 10% - холестерин и 10% - белки. Главный поверхностно-активный компонент - дипальмитоилфосфатидилхолин - ненасыщенный фосфолипид. Примерно половину белков сурфактанта составляют белки плазмы (преимущественно альбумины) и IgA. Сурфактант содержит ряд уникальных белков, способствующих адсорбции дипальмитоилфосфатидилхолина на границе двух фаз.

Регуляция выработки сурфактанта. Образованию компонентов сурфактанта у плода способствуют глюкокортикоиды, пролактин, гормоны щитовидной железы, эстрогены, андрогены, факторы роста, инсулин, β-адренергические агонисты. У взрослых продукцию сурфактанта регулируют ацетилхолин и простагландины.

• Функции сурфактанта

♦ Снижение поверхностного натяжения на границе «вода-воздух» - главная функция сурфактанта. Поскольку сурфактант уменьшает поверхностное натяжение, это увеличивает податливость лёгких, облегчая их расширение при вдохе.

♦ Сурфактант способствует поддержанию относительно одинаковых размеров альвеол в ходе респираторного цикла, что важно для нормального газообмена.

♦ Сурфактант предотвращает непосредственный контакт пневмоцитов с посторонними частицами и инфекционными агентами, попадающими в альвеолы с вдыхаемым воздухом. Циклические изменения поверхностного натяжения, происходящие при вдохе и выдохе, обеспечивают зависимый от дыхания механизм очистки. Обволакиваемые сурфактантом пылевые частицы транспортируются из альвеол в бронхиальную систему, из которой они удаляются со слизью.

♦ Сурфактант регулирует количество макрофагов, мигрирующих в альвеолы из межальвеолярных перегородок, стимулируя активность этих клеток. Бактерии, проникающие в альвеолы с воздухом, опсонизируются сурфактантом, что облегчает их фагоцитоз альвеолярными макрофагами.

♦ Сурфактант присутствует в бронхиальном секрете, покрывая бронхиолярные экзокриноциты и реснитчатые клетки, и имеет тот же химический состав, что и альвеолярный сурфактант. Очевидно, сурфактант необходим для стабилизации дистальных воздухоносных путей.

Возрастные изменения. В постнатальном периоде дыхательная система претерпевает большие изменения, связанные с началом выполнения газообменной и других функций после перевязки пуповины новорожденного.

В детском и юношеском возрасте прогрессивно увеличиваются дыхательная поверхность легких, эластические волокна в строме органа, особенно при физической нагрузке (спорт, физический труд). Общее количество легочных альвеол у человека в юношеском и молодом возрасте увеличивается примерно в 10 раз. Соответственно изменяется и площадь дыхательной поверхности. Однако относительная величина респираторной поверхности с возрастом уменьшается. После 50—60 лет происходят разрастание соединительнотканной стромы легкого, отложение солей в стенке бронхов, особенно прикорневых. Все это приводит к ограничению экскурсии легких и уменьшению основной газообменной функции.

Регенерация. Физиологическая регенерация органов дыхания наиболее интенсивно протекает в пределах слизистой оболочки за счет малоспециализированных клеток. После удаления части органа ее восстановления путем отрастания практически не происходит. После частичной пульмонэктомии в эксперименте в оставшемся легком наблюдается компенсаторная гипертрофия с увеличением объема альвеол и последующим размножением структурных компонентов альвеолярных перегородок. Одновременно расширяются сосуды микроциркуляторного русла, обеспечивающие трофику и дыхание.

 

Плевра

 

Легкие снаружи покрыты плеврой, называемой легочной, или висцеральной. Висцеральная плевра плотно срастается с легкими, эластические и коллагеновые волокна ее переходят в интерстициальную соединительную ткань, поэтому изолировать плевру, не травмируя легкие, трудно. В висцеральной плевре встречаются гладкие мышечные клетки. В париетальной плевре, выстилающей наружную стенку плевральной полости, эластических элементов меньше, гладкие мышечные клетки встречаются редко.

 

В легочной плевре есть два нервных сплетения: мелкопетлистое под мезотелием и крупнопетлистое в глубоких слоях плевры. Плевра имеет сеть кровеносных и лимфатических сосудов. В процессе органогенеза из мезодермы формируется только однослойный плоский эпителий — мезотелий, а соединительнотканная основа плевры развивается из мезенхимы. В зависимости от состояния легкого мезотелиальные клетки становятся плоскими или высокими.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...