Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Применение ультразвука в косметологии

Свисток Гальтона

Основная статья: Свисток Гальтона

Первый ультразвуковой свисток сделал в 1883 году англичанин Гальтон.
Ультразвук здесь создаётся подобно звуку высокого тона на острие ножа, когда на него попадает поток воздуха. Роль такого острия в свистке Гальтона играет «губа» в маленькой цилиндрической резонансной полости. Газ, пропускаемый под высоким давлением через полый цилиндр, ударяется об эту «губу»; возникают колебания, частота которых (около 170 кГц) определяется размерами сопла и губы. Мощность свистка Гальтона невелика. В основном его применяют для подачи команд при дрессировке собак и кошек.

Жидкостный ультразвуковой свисток

Большинство ультразвуковых свистков можно приспособить для работы в жидкой среде. По сравнению с электрическими источниками ультразвука жидкостные ультразвуковые свистки маломощны, но иногда, например, для ультразвуковой гомогенизации, они обладают существенным преимуществом. Так как ультразвуковые волны возникают непосредственно в жидкой среде, то не происходит потери энергии ультразвуковых волн при переходе из одной среды в другую. Пожалуй, наиболее удачной является конструкция жидкостного ультразвукового свистка, изготовленного английскими учёными Коттелем и Гудменом в начале 50-х годов XX века. В нём поток жидкости под высоким давлением выходит из эллиптического сопла и направляется на стальную пластинку. Различные модификации этой конструкции получили довольно широкое распространение для получения однородных сред. Благодаря простоте и устойчивости своей конструкции (разрушается только колеблющаяся пластинка) такие системы долговечны и недороги.

Сирена

Сирена — механический источник упругих колебаний и, в том числе, ультразвука. Их частотный диапазон может достигать 100 кГц, но известны сирены, работающие на частоте до 600 кГц. Мощность сирен доходит до десятков кВт.

Воздушные динамические сирены применяются для сигнализации и технологических целей (коагуляция мелкодисперсных аэрозолей, разрушение пены, осаждение туманов, ускорение процессов массо- и теплообмена и т. д.).

Все ротационные сирены состоят из камеры, закрытой сверху диском (статором), в котором сделано большое количество отверстий. Столько же отверстий имеется и на вращающемся внутри камеры диске — роторе. При вращении ротора положение отверстий в нём периодически совпадает с положением отверстий на статоре. В камеру непрерывно подаётся сжатый воздух, который вырывается из неё в те короткие мгновения, когда отверстия на роторе и статоре совпадают.

Частота звука в сиренах зависят от количества отверстий и их геометрической формы, и скорости вращения ротора.

Ультразвук в природе

Летучие мыши, использующие при ночном ориентировании эхолокацию, испускают при этом ртом (кожановые — Vespertilionidae) или имеющим форму параболического зеркала носовым отверстием (подковоносые — Rhinolophidae) сигналы чрезвычайно высокой интенсивности. На расстоянии 1 — 5 см от головы животного давление ультразвука достигает 60 мбар, то есть соответствует в слышимой нами частотной области давлению звука, создаваемого отбойным молотком. Эхо своих сигналов летучие мыши способны воспринимать при давлении всего 0,001 мбар, то есть в 10000 раз меньше, чем у испускаемых сигналов. При этом летучие мыши могут обходить при полете препятствия даже в том случае, когда на эхолокационные сигналы накладываются ультразвуковые помехи с давлением 20 мбар. Механизм этой высокой помехоустойчивости еще неизвестен. При локализации летучими мышами предметов, например, вертикально натянутых нитей с диаметром всего 0,005 — 0,008 мм на расстоянии 20см (половина размаха крыльев), решающую роль играют сдвиг во времени и разница в интенсивности между испускаемым и отраженным сигналами. Подковоносы могут ориентироваться и с помощью только одного уха (моноаурально), что существенно облегчается крупными непрерывно движущимися ушными раковинами. Они способны компенсировать даже частотный сдвиг между испускаемыми и отражёнными сигналами, обусловленный эффектом Доплера (при приближении к предмету эхо является более высокочастотным, чем посылаемый сигнал). Понижая во время полёта эхолокационную частоту таким образом, чтобы частота отражённого ультразвука оставалась в области максимальной чувствительности их «слуховых» центров, они могут определить скорость собственного перемещения.

У ночных бабочек из семейства медведиц развился генератор ультразвуковых помех, «сбивающий со следа» летучих мышей, преследующих этих насекомых.

Эхолокацию используют для навигации и птицы — жирные козодои, или гуахаро. Населяют они горные пещеры Латинской Америки — от Панамы на северо-западе до Перу на юге и Суринама на востоке. Живя в кромешной тьме, жирные козодои, тем не менее, приспособились виртуозно летать по пещерам. Они издают негромкие щёлкающие звуки, воспринимаемые и человеческим ухом (их частота примерно 7 000 Герц). Каждый щелчок длится одну-две миллисекунды. Звук щелчка отражается от стен подземелья, разных выступов и препятствий и воспринимается чутким слухом птицы.

Ультразвуковой эхолокацией в воде пользуются китообразные.

Применение ультразвука

Диагностическое применение ультразвука в медицине (УЗИ)

Основная статья: Ультразвуковое исследование

Благодаря хорошему распространению ультразвука в мягких тканях человека, его относительной безвредности по сравнению с рентгеновскими лучами и простотой использования в сравнении смагнитно-резонансной томографией, ультразвук широко применяется для визуализации состояния внутренних органов человека, особенно в брюшной полости и полости таза.

Терапевтическое применение ультразвука в медицине

Помимо широкого использования в диагностических целях (см. Ультразвуковое исследование), ультразвук применяется в медицине (в том числе регенеративной) в качестве инструмента лечения.

Ультразвук обладает следующими эффектами:

· противовоспалительным, рассасывающим действиями;

· анальгезирующим, спазмолитическим действиями;

· кавитационным усилением проницаемости кожи.

Фонофорез — комбинированный метод лечения, при котором на ткани вместо обычного геля для ультразвуковой эмиссии (применяемого, например, при УЗИ) наносится лечебное вещество (как медикаменты, так и вещества природного происхождения). Предполагается, что ультразвук помогает лечебному веществу глубже проникать в ткани.

Применение ультразвука в косметологии

Многофункциональные косметологические аппараты, генерирующие ультразвуковые колебания с частотой 1МГц, применяются для регенерации клеток кожи и стимуляции в них метаболизма.С помощью ультразвука производится микромассаж клеток, улучшается микроциркуляция крови и лимфодренаж. В результате повышается тонус кожи, подкожных тканей и мышц.Ультразвуковой массаж способствует выделению биологических активных веществ, ликвидирует спазм в мышцах, в результате чего разглаживаются морщины,подтягиваются ткани лица и тела. С помощью ультразвука осуществляется наиболее глубокое введение косметических средств и препаратов, а также выводятся токсины и очищаются клетки.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...