Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Изучение физиологии растений при воздействии на них новых стресс-факторов (повышенная концентрация углекислого газа, увеличенный уровень УФ-радиации) в свете глобального изменения климата




 

Способность растения переносить действие неблагоприятных факторов и давать в таких условиях потомство называется устойчивостью.

Газоустойчивость - это способность растений сохранять жизнедеятельность в присутствии в атмосфере вредных газов. К ним относятся газообразные соединения: сернистый газ (SO2), оксиды азота (NO, NO2), угарный газ (СО), соединения фтора и др., углеводороды, пары кислот (серной, сернистой, азотной, соляной), фенола и др., твердые частицы сажи, золы, пыли, содержащие токсические оксиды свинца, селена, цинка и т.д.

Загрязняющие атмосферный воздух компоненты (эксгалаты) по величине частиц, скорости оседания под действием силы тяжести и электромагнитному спектру подразделяют на пыль, пары, туманы и дым. Газы и пары, легко проникая в ткани растений через устьица, могут непосредственно влиять па обмен веществ клеток, вступая в химические взаимодействия уже на уровне клеточных стенок и мембран. Пыль, оседая на поверхности растения, закупоривает устьица, что ухудшает газообмен листьев, затрудняет поглощение спета, нарушает водный режим. Наиболее сильно газы воздействуют на процессы в листьях. Косвенный эффект загрязнения атмосферы проявляется через почву, где газы влияют на микрофлору, почвенный поглощающий комплекс и корни растений. Кислые газы и кислые дожди нарушают водный режим тканей, приводят к постоянному закислению цитоплазмы клеток, изменению работы транспортных систем мембран (плазмалеммы, хлоропластов), накоплению Са, Zn, Pb, Сu. В этих условиях интенсивность фотосинтеза снижается из-за нарушения мембран хлоропластов. Кроме того, на свету быстро разрушаются хлорофилл а и каротин, меньше - хлорофилл b и ксантофиллы.

В зависимости от механизмов, ее определяющих, газоустойчивость классифицируется как биологическая, анатомо-морфологическая и физиолого-биохимическая.

Под биологической газоустойчивостью следует понимать зависимость устойчивости растений от биологических особенностей (фазы роста и развития, скорости роста, наличия критических периодов), систематического положения и географического происхождения, преадаптации, экологической пластичности, светолюбия и др. Например, крестоцветные более устойчивы, чем бобовые, из бобовых фасоль более устойчива, чем клевер, соя и т.д. Древесные растения (вяз, жимолость, клен) менее устойчивы по отношению к хлору, фтору, закиси азота, чем травянистые. У цветковых повреждаемость листьев зависит даже от их положения на побеге. Культурным растениям свойственна большая чувствительность к загрязнению атмосферы по сравнению с дикими видами.

Анатомо-морфологическая устойчивость связана с особенностями строения растений. Она проявляется в зависимости газоустойчивости растений от некоторых особенностей в анатомо-морфологическом строении листьев, ответственных за интенсивность газообмена и, следовательно, за скорость поглощения токсичных газов. Скорость поглощения газов зависит от числа устьиц, динамики их движения (степени открытия) в течение суток, толщины кутикулы, эпидермиса, толщины губчатой ткани, отношения высоты палисадной ткани к высоте губчатой и объема полостей в губчатой паренхиме. Для устойчивых видов древесных и цветочных растений в отличие от неустойчивых характерны большее число устьиц на 1 мм2 поверхности листа; меньшая длительность и степень открытия их в течение дня; большая толщина кутикулы и наличие различных дополнительных покровных образований; меньшая толщина и вентилируемость губчатой ткани; меньшая величина отношения высоты палисадной ткани к высоте губчатой. Все эти признаки в строении обусловливают снижение газообмена и, следовательно, поглощение вредных, газов. Для газоустойчивых видов характерны признаки ксероморфных черт в строении листьев, а для неустойчивых видов - мезоморфных.

Физиолого-биохимическая устойчивость определяется индивидуальными особенностями метаболизма растений, скоростью протекания биохимических реакций, способностью утилизировать ядовитые вещества, связывать их белками цитоплазмы и т.д. К физиологическим механизмам устойчивости можно отнести состояние покоя у растений, которое выработалось в ходе эволюции как приспособление к перенесению неблагоприятного периода года, характеризующегося низкими температурами или продолжительными засухами. Резкое снижение интенсивности газообмена при одновременном усилении развития покровных тканей обеспечивает зимующим побегам деревьев и кустарников высокую газоустойчивость. Возрастание уровня сахаров, аскорбиновой кислоты, азотосодержащих веществ в листьях также способствуют повышению газоустойчивости. Поддержание ионного баланса и буферных свойств цитоплазмы может быть связано с уровнем в клетках катионов (К+, Na+, Са2+), способных нейтрализовать ангидриды кислот. Обычно растения, устойчивые к засухе, засолению и некоторым другим подобным воздействиям, имеют более высокую газоустойчивость, возможно благодаря способности регулировать водный режим и ионный состав.

Сильнейшим стресс-фактором для растений, как всего живого, является ультрафиолетовое излучение (УФ), под воздействием которого изменяются физиологические и биохимические процессы растительной клетки. Изменения зависят от строения ткани растения, стадии его развития и генотипа. Сказывается на изменениях в растении длительность его облучения и длина волны УФ - излучения. Так под влиянием коротковолнового излучения в растительной клетке поражается ДНК, средневолновое излучение разрушает белки (но в незначительных количествах оно необходимо растениям), длинноволновое же излучение опасно для клеток растений только в больших дозах.

В естественных или экспериментально созданных условиях стрессовое состояние у растений может быть индуцировано повышенным уровнем ультрафиолетового излучения или ионизирующего излучения. Первостепенное значение облучения связано с его влиянием на генетический аппарат клетки. Различные типы излучений могут также непосредственно нарушать многие физиологические процессы: дыхание, фотосинтез, рост активный транспорт, а также ионный баланс и синтез белка. В лучевом поражении клеток большую роль играют образующиеся при радиационном воздействии токсичные продукты окисления биосубстратов и ненасыщенных жирных кислот (радиотоксины). Образующиеся при облучении водорастворимые, а также липоидные радиотоксины взаимодействуют с генетическими структурами и мембранами и, таким образом, играют важную роль в развитии лучевого поражения клетки. Радиотоксины способны активно реагировать с ДНК и действовать на внутренние мембраны клеток, вызывая мутагенные эффекты. При воздействии на мембраны митохондрий возникают нарушения в окислительно-восстановительных процессах, сопряженных с реакциями окислительного фосфорилирования. Предполагается, что липоидные радиотоксины действуют в основном на мембраны, а хиноидные радиотоксины реагируют с ДНК ядра, вызывая нарушение в ней информации.

Первичное действие излучения на генетический материал приводит к разрыву хромосом, в результате чего образуются фрагменты, в затем и перекомбинации, вызывающие появление хромосомных перестроек. Более сильное воздействие радиации приводит к прекращению митозов и сильному повреждению ядер. В настоящий период быстрого развития атомной энергетики все большее внимание привлекает проблема надежности растений и непосредственно устойчивости их к ионизирующему излучению. Основную роль в защите растений от облучения играют репарационные процессы, среди которых выделяют репарацию генетических управляющих систем клетки и репарацию отдельных клеточных структур.

Все механизмы защиты и восстановления не являются специфичными только для растений и поэтому их изучение важно для решения проблемы радиоустойчивости как растений, так и других живых организмов. Устойчивость к УФ излучению, которое обладает слабой проникающей способностью, может быть обусловлена абсорбцией падающей радиации эпидермальными клетками, морфологическим строением растений, которое предохраняет чувствительные клетки, механизмами фоторепарации. Значительную роль в защите растений от УФ играет аккумуляция в вакуоле клетки флавоноидов, абсорбирующих значительную часть УФ радиации.

Растения выработали биохимические защитные механизмы от воздействия больших доз УФ-излучения: они вырабатывают флавоноидные пигменты и другие фенольные соединения, являющиеся его протекторами: флавониды, антоцианы и др. Эти вещества накапливаются в эпидермисе клетки и блокируют до 99% УФ-излучения. Ультрафиолетовое излучение не проникает через оконное стекло, рассеивается тканью, оно не превышает допустимых величин в тени.

 


Список используемой литературы

 

. Кузнецов В.В. Физиология растений / В.В.Кузнецов, Г.А.Дмитриева. -М.: Высш. шк., 2005. - 736 с.

2. Ловцова Н.М. Физиология растений. Учебное пособие. Ч.2 / Н.М.Ловцова. - Улан-Удэ.: БГУ, 2004. - 59 с.

.   Медведев С.С. Физиология растений / С.С.Медведев. - СПб.: Изд-во Санкт-Петербургского ун-та, 2004. - 336 с.

.   Полонский В.И. Физиология растений: учеб.пособие / В.И.Полонский. - Красноярск: КГАУ, 2008. - 212 с.

.   Физиология растений / Н.Д.Алехина, Ю.В.Балнокин, В.Ф.Гавриленко и др. - М.: Академия, 2005. - 635 с.

.   Якушкина Н.И. Физиология растений / Н.И.Якушкина, Е.Ю.Бахтенко. - М.: Владос, 2005. - 463 с.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...