Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Превращения в системе железо-углерод




Диаграмма Fe-Fe3C является характерным примером сложной системы, содержащей три превращения:

1. Перитектическое превращение (линия HJB) с перитектической точкой при 0,16%С и 1493оС (точка J), в результате чего из расплава и первично выделенного d -твердого раствора (ОЦК) образуется g -твердый раствор (ГЦК) по реакции: Ж 0,51 + d0,1 ® g0,16.

2. Эвтектическая реакция (линия ECF) между расплавом, g-твердым раствором и Fe3C (С) по реакциям:

при 4,3% С и 1147оС Ж 4,3® g2,14+Fe3C 6,67 (точка С), метастабильная диаграмма,

при при 4,25% С и 1153оС Ж 4,25® g2,06+ C (точка С’) стабильная диаграмма.

Эвтектическая горизонталь простирается от 2,14 (2,06) до 6,67% С, соответственно от 31 до 100% Fe3C.

3. Эвтектоидное превращение g - твердого раствора (аустенит) в a + Fe3C при 0,8%С и 723оС по реакции:

g0,8 ® a0,025 + Fe3C 6,67 (точка S).

Эвтектоидная смесь феррита и цементита, образовавшаяся по этой реакции, называется перлитом.

При очень медленном охлаждении или длительной выдержке при температуре 738оС возможна реакция по стабильной диаграмме g0,69 ® a0,025 + C (точкаS’).

При содержании углерода 2,14 – 4,3%- наряду с первично выделенным g - твердым раствором (аустенитом) или при 4,3 – 6,67% С - первично выделенным цементитом, оставшийся расплав при температуре 1147оС кристаллизуется в эвтектику (g + Fe3C), которая называется также ледебуритом.

С максимальной растворимостью углерода в g -твердом растворе при 2,14% связываются границы для стали (<2,14%) и чугуна (>2,14%).Как видно из диаграммы, стали не испытывают эвтектического превращения.

Диаграммы состояния двойных сплавов строят в двух измерениях: по оси ординат откладывают температуру, а по оси абсцисс - концентрацию компонентов. Общее содержание двухкомпонентного сплава в любой точке абсциссы равно 100%, а крайние ординаты соответствуют чистым компонентам. Каждая точка на диаграмме состояния показывает состояние сплава данной концентрации при данной температуре и называется фигуративной точкой.

Правило фаз. Различные изменения системы, происходящие в зависимости от внешних условий (например, температуры), подчиняются правилу фаз. Оно устанавливает зависимость между числом компонентов, числом фаз и числом степеней свободы системы. Под числом степеней свободы (вариантность) системы понимают число внешних и внутренних факторов (температура, давление и концентрация), которое можно изменить без изменения числа фаз данной системы.

Правило фаз для металлических систем при постоянном давлении выражается уравнением

С =К+ 1 -Ф,

где С - число степеней свободы системы; К- число компонентов, образующих систему; Ф - число фаз, находящихся в равновесии; 1 - число внешних переменных факторов (температура)

В процессе затвердевания чистого металла (К=1, Ф=2)- система нонвариантная (безвариантная), так как, согласно приведенной формуле, С=0. В системе нельзя произвольно изменять внешний фактор (температуру), не изменяя числа фаз и равновесия системы.

Чистый расплавленный металл (К=1, Ф=1) представляет моновариантную (одновариантную) систему с одной степенью свободы (С=1). Сохраняя металл в жидком виде, можно в определенных пределах (выше точки плавления) изменять температуру, не изменяя числа фаз и равновесия системы. Если двухкомпонентная система находится в расплавленном состоянии ( К=2, Ф=1), то имеем две степени свободы (С=2), т.е. систему бивариантную (двухвариантную). В этом случае существуют различные температуры и концентрации, при которых не изменяется число фаз и равновесие системы. Для этой же системы при наличии двух фаз (жидкой и твердой) имеем К =2, Ф=2 и С=1, т. е. с изменением температуры концентрация должна быть строго определенной.

 

 

Вопрос 35

Термической обработкой называют нагрев до определенной температуры, выдержку и охлаждение металлов и сплавов с целью изменения их структуры.

Термическая обработка подразделяется на 3 группы собственно термическую, термомеханическую и химико-термическую Собственно термическая обработка (ТО) предусматривает только термическое воздействие на металл или сплав, термомеханическая (ТМО) - сочетание термического воздействия и пластической деформации, химико-термическая (ХТО) - сочетание термического и химического воздействия.

Термическая обработка, заключающаяся в нагреве металла, находящегося в результате каких-либо предшествующих воздействий в неравновесном состоянии, и приводящая его в более равновесное состояние, называется отжигом. Охлаждение после отжига производится вместе с печью.

Нагрев при отжиге может производиться ниже или выше температур фазовых превращений в зависимости от целей отжига

Отжиг, при котором нагрев и выдержка металла производятся с целью приведения его в равновесное состояние за счет уменьшения (устранения) химической неоднородности, снятия внутренних напряжений и рекристаллизации, называется отжигом первого рода. Его проведение не связано с протеканием фазовых превращений. Он возможен для любых металлов и сплавов

Различают следующие разновидности отжига 1 рода: диффузионный отжиг (гомогенизирующий) используют для устранения химической неоднородности, возникающей при кристаллизации сплава (дендритной ликвации).

Выравнивание химического состава происходит благодаря диффузионным процессам, скорость которых зависит от температуры.

Рекристаллизационный отжиг применяют после холодной пластической деформации (холодной обработки давлением) для снятия наклепа и получения равновесного состояния сплава. В результате рекристаллизации в деформированном металле образуются новые зерна, снимаются напряжения, и восстанавливается пластичность металла.

Отжиг для снятия напряжений, возникающих при ковке, сварке, литье, которые могут вызвать коробление, т. е. изменение формы, размеров и даже разрушение изделий.

 

Неравновесная кристаллизация. Процесс диффузии протекает медленно, поэтому в реальных условиях охлаждения состав в пределах каждого кристалла и разных кристаллов не успевает выравниваться и будет неодинаковым.

Если в процессе охлаждения возможен распад твердого раствора, то диаграмма состояния показывает начало этого процесса при самом медленном охлаждении.

С увеличением скорости охлаждения температура начала выделения избыточной фазы снижается, количество выделившейся фазы уменьшается, и при определении большей скорости охлаждения твердый раствор без выделений полностью переохлаждается до комнатной температуры.

Регулируя скорость охлаждения, можно добиться разной степени распада вплоть до полного его подавления.

Такие пересыщенные растворы неустойчивы.

Если тепловая подвижность атомов переохлажденного раствора недостаточна, то состояние пересыщения может сохраняться неопределенно долгое время.

В противном случае с течением времени будет происходить постепенный распад пересыщенного раствора с выделением избыточной фазы. Этот процесс будет ускоряться при повышении температуры.

Вторичные фазы, которые образуются при высокой температуре, при медленном охлаждении твердого раствора или высоком вторичном нагреве закаленного (пересыщенного) твердого раствора не только крупнее по размерам, но ориентационно не связаны с маточной фазой. Слой атомов, относящийся к старой фазе, граничит со слоем атомов, которые принадлежат решетке новой фазы.

Для случая выделения при низкой температуре новая в-фаза определенным образом ориентирована относительно исходной, так что пограничный слой атомов в равной степени принадлежит обеим решеткам.

Подобное сочленение кристаллических решеток называется когерентным. На границе раздела при когерентной связи возникают и сохраняются напряжения тем большие, чем больше отличие в строении (в плоскости раздела) сопряженных решеток.

Если, температуру сплава повышать, то вследствие увеличения тепловой подвижности атомов и наличия напряжений на границах раздела фаз когерентная связь разрывается (явление срыва когерентности), метастабильные фазы переходят в устойчивую в-фазу, пластинчатые кристаллики в-фазы растут, стремясь принять округлую форму. Когда эти процессы пройдут полностью, структура и фазовый состав станут такими же, как и в случае медленного охлаждения.

Процесс фиксирования быстрым охлаждением неустойчивого состояния носит название закалки, а последующий процесс постепенного приближения к равновесному состоянию (путем нагрева или длительной выдержки) называется отпуском и старением. Столь разнообразное изменение структуры, достигаемое разной степенью приближения сплава к равновесному состоянию, приводит к разнообразному изменению свойств, чем и обусловлено широкое применение термической обработки,в основе которой заложены процессы неравновесной кристаллизации.

Вопрос 53

 

Сплавы железа с углеродом, содержащие до 2,14 % С (точка Е) при малом содержании других элементов, называются углеродистыми сталями. Углеродистые стали завершают кристаллизацию образованием аустенита. В их структуре нет эвтектики (ледебурита), благодаря чему они обладают высокой пластичностью, особенно при нагреве, и хорошо деформируются.

Углеродистые стали классифицируют

o по структуре,

o по способу производства и раскисления,

o по качеству.

По структуре различают: 1) доэвтектоидную сталь, содержащую до 0,8% С, структура которой состоит из феррита и перлита; 2) эвтектоидную, содержащую около 0,8% С, структура которой состоит только из перлита; 3) заэвтектоидную, содержащую 0,8-2,14% С. Ее структура состоит из зерен перлита, окаймленных сеткой цементита.

По способу производства различают стали, выплавленные в электропечах, мартеновских печах и кислородно-конвертерным способом.

По способу раскисления различают кипящие, полуспокойные и спокойные стали.

По качеству различают стали обыкновенного качества и качественные стали.

  S P
Стали обыкновенного качества не более 0,05 % не более 0,04 %
Качественные стали не более 0,04 % не более 0,035 %

Качественные стали менее загрязнены неметаллическими включениями и газами. Поэтому при одинаковом содержании углерода качественные стали имеют более высокие пластичность и вязкость, особенно при низких температурах.

глеродистые конструкционные стали подразделяются на стали обыкновенного качества и качественные.

Марки сталей обыкновенного качества Ст0, Ст1, Ст2,…, Ст6 (с увеличением номера возрастает содержание углерода). Стали обыкновенного качества, особенно кипящие, наиболее дешевые. Из сталей обыкновенного качества изготовляют горячекатаный рядовой прокат: балки, прутки, листы, трубы. Стали применяют в строительстве для сварных и болтовых конструкций. С повышением содержания в стали углерода свариваемость ухудшается. Стали Ст5 и Ст6, имеющие более высокое содержание углерода, применяют для элементов строительных конструкций, не подвергаемых сварке.

Выплавление качественной углеродистой стали производится при соблюдении строгих условий в отношении состава шихты и ведения плавки и разливки. Качественные углеродистые стали маркируют цифрами 08, 10, 15,…, 85, указывающие среднее содержание углерода в сотых долях процента.

Низкоуглеродистые стали имеют высокую прочность и высокую пластичность. Стали, не обработанные термически, применяются для малонагруженных деталей, ответственных сварных конструкций, для деталей машин, упрочняемых цементацией. Среднеуглеродистые стали (0.3–0.5 % С) 30, 35, …, 55 применяют после нормализации, улучшения и поверхностной закалки. Эти стали имеют высокую прочность при более низкой пластичности, их применяют для изготовления небольших или крупных деталей, не требующих сквозной прокаливаемости. Стали с высоким содержанием углерода обладают высокой прочностью, износостойкостью. Из этих сталей изготавливают пружины и рессоры, замковые шайбы, прокатные валки.

Конструктивная прочность – это комплекс механических свойств, обеспечивающий длительную и надежную работу материала в условиях его эксплуатации. Конструктивная прочность – это прочность материала конструкции с учетом конструкционных, металлургических, технологических и эксплуатационных факторов.

Учитываются четыре критерия: прочность материала, надежность и долговечность материала в условиях работы данной конструкции. Прочность – способность тела сопротивляться деформациям и разрушению.

Надежность – свойство изделия выполнять заданные функции и сохранять свои эксплуатационные показатели в течение требуемого промежутка времени. Надежность конструкции – это ее способность работать вне расчетной ситуации. Главным показателем надежности является запас вязкости материала, который зависит от состава, температуры, условий нагружения, работы, поглощаемой при распространении трещины.

Сопротивление материала хрупкому разрушению является важнейшей характеристикой, определяющей надежность работы конструкций.

Долговечность – свойство изделия сохранять работоспособность до предельного состояния (невозможности его дальнейшей эксплуатации). Долговечность зависит от условий ее работы (это сопротивление износу при трении и контактная прочность, сопротивление материала поверхностному износу, возникающему при трении качения со скольжением).

Инструментальные стали предназначены для изготовления режущего, измерительного инструмента и штампов холодного и горячего деформирования. Основные свойства для инструмента – износостойкость и теплостойкость. Для износостойкости инструмента необходима высокая поверхностная твердость, а для сохранения формы инструмента сталь должна быть прочной, твердой и вязкой. От теплостойкости стали зависит возможная температура разогрева режущего инструмента. Углеродистые инструментальные стали являются наиболее дешевыми. В основном их применяют для изготовления малоответственного режущего инструмента и для штампово-инструментальной оснастки регламентированного размера.

Производятся (ГОСТ 1435-74) качественные (У7, У8, У9) и высококачественные – (У7А, У8А, У9А) углеродистые стали. Буква У в марке показывает, что сталь углеродистая, а цифра – среднее содержание углерода в десятых долях процента. Буква А в конце марки показывает, что сталь высококачественная. Углеродистые стали поставляют после отжига на зернистый перлит. За счет невысокой твердости в состоянии поставки (НВ 187–217) углеродистые стали хорошо обрабатываются резанием и деформируются, что позволяет применять накатку, насечку и другие высокопроизводительные методы изготовления инструмента.

Стали марок У7, У8, У9 подвергают полной закалке и отпуску при 275–350 °C на тростит; так как они более вязкие, то их используют для производства деревообделочного, слесарного, кузнечного и прессового инструмента.

Заэвтектоидные стали марок У10, У11, У12 подвергают неполной закалке. Инструмент этих марок обладает повышенной износостойкостью и высокой твердостью.

Заэвтектоидные стали используют для изготовления мерительного инструмента (калибры), режущего (напильники, сверла) и штампов холодной высадки и вытяжки, работающих при невысоких нагрузках.

Недостатком инструментальных углеродистых сталей является потеря прочности при нагреве выше 200 °C (отсутствие теплостойкости). Инструмент из этих сталей применяют для обработки мягких материалов и при небольших скоростях резания или деформирования.

Вопрос 71

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...