Контрольная работа 5.
501. Между стеклянной пластинкой и лежащей на ней плосковыпуклой линзой находится жидкость. Найти показатель преломления жидкости, если радиус r3 третьего темного кольца Ньютона при наблюдении в отраженном свете с длиной волны λ= 0,6 мкм равен 0,82 мм. Радиус кривизны линзы R = 0,5 м. 502. На тонкую пленку в направлении нормали к ее поверхности падает монохроматический свет с длиной волны λ = 500 нм. Отраженный от нее свет максимально усилен вследствие интерференции. Определить минимальную толщину dmin пленки, если показатель преломления материала пленки n = 1,4. 503. Расстояние L от щелей до экрана в опыте Юнга равно 1 м. Определить расстояние между щелями, если на отрезке длиной l = 1 см укладывается N = 10 темных интерференционных полос. Длина волны λ = 0,7 мкм. 504. На стеклянную пластину положена выпуклой стороной плосковыпуклая линза. Сверху линза освещена монохроматическим светом длиной волны λ = 500 нм. Найти радиус R линзы, если радиус четвертого кольца Ньютона в отраженном свете r4 = 2 мм. 505. На тонкую глицериновую пленку толщиной d = 1,5 мкм нормально к ее поверхности падает белый свет. Определить длины волн λ лучей видимого участка спектра (0,4≤λ≤ 0,8 мкм), которые будут ослаблены в результате интерференции. 506. На стеклянную пластинку нанесен тонкий слой прозрачного вещества с показателем преломления n = 1,3. Пластика освещена параллельным пучком монохроматического света с длиной волны λ = 640 нм, падающим на пластинку нормально. Какую минимальную толщину dmin должен иметь слой, чтобы отраженный пучок имел наименьшую яркость? 507. На тонкий стеклянный клин падает нормально параллельный пучок света с длиной волны λ = 500 нм. Расстояние между соседними темными интерференционными полосами в отраженном свете b = 0,5 мм. Определить угол α между поверхностями клина. Показатель преломления стекла, из которого изготовлен клин, n = 1,6.
508. Плосковыпуклая линза с фокусным расстоянием f = 1 мм лежит выпуклой стороной на стеклянной пластинке. Радиус пятого темного кольца Ньютона в отраженном свете r5 = 1,1 мм. Определить длину световой волны λ. 509. Постоянная дифракционной решетки в n = 4 раза больше длины световой волны монохроматического света, нормально падающего на ее поверхность. Определить угол α между двумя первыми симметричными дифракционными максимумами. 510. Расстояние между штрихами дифракционной решетки d = 4 мкм. На решетку падает нормально свет с длиной волны λ = 0,58 мкм. Максимум какого наибольшего порядка дает эта решетка? 511. Какое наименьшее число Nmin штрихов должна содержать дифракционная решетка, чтобы в спектре второго порядка можно было видеть раздельно две желтые линии натрия с длинами волн λ1= 589,0 нм и λ2= 589,6 нм? Какова длина l такой решетки, если постоянная решетки d = 5 мкм? 512. На поверхность дифракционной решетки нормально к ее поверхности падает монохроматический свет. Постоянная дифракционной решетки в n = 4,6 раза больше длины световой волны. Найти общее число М дифракционных максимумов, которые теоретически возможно наблюдать в данном случае. 513. На дифракционную решетку падает нормально параллельный пучок белого света. Спектры третьего и четвертого порядка частично накладываются друг на друга. На какую длину волны в спектре четвертого порядка накладывается граница (λ = 780 нм) спектра третьего порядка? 514. На дифракционную решетку, содержащую n = 600 штрихов на миллиметр, падает нормально белый свет. Спектр проецируется помещенной вблизи решетки линзой на экран. Определить длину l спектра первого порядка на экране, если расстояние от линзы до экрана L= 1,2 м. Границы видимого спектра: λкр = 780 нм, λф = 400 нм.
515. На грань кристалла каменной соли падает параллельный пучок рентгеновского излучения. Расстояние d между атомными плоскостями равно 280 пм. Под углом α = 650 к атомной плоскости наблюдается дифракционный максимум первого порядка. Определить длину волны λ рентгеновского излучения. 516. На непрозрачную пластину с узкой щелью падает нормально плоская монохроматическая световая волна (λ = 600 нм). Угол отклонения лучей, соответствующих второму дифракционному максимуму, φ = 200. Определить ширину а щели. 517. Пучок света последовательно проходит через два николя, плоскости пропускания которых образуют между собой угол φ = 400. Принимая, что коэффициент поглощения k каждого николя равен 0,15, найти, во сколько раз пучок света, выходящий из второго николя, ослаблен по сравнению с пучком, падающим на первый николь. 518. Угол падения i1 луча на поверхность стекла равен 600. При этом отраженный пучок света оказался максимально поляризованным. Определить угол i2 преломления луча. 519. Угол α между плоскостями пропускания поляроидов равен 500. Естественный свет, проходя через такую систему, ослабляется в n = 4 раза. Пренебрегая потерей света при отражении, определить коэффициент поглощения k света в поляроидах. 520. Пучок света, идущий в стеклянном сосуде с глицерином, отражается от дна сосуда. При каком угле i1 падения отраженный пучок света максимально поляризован? 521. Пластинку кварца толщиной d= 2 мм поместили между параллельными николями, в результате чего плоскость поляризации монохроматического света повернулась на угол φ = 530. Какой наименьшей толщины dmin следует взять пластинку, чтобы поле зрения поляриметра стало совершенно темным? 522. Параллельный пучок света переходит из глицерина в стекло так, что пучок, отраженный от границы раздела этих сред, оказывается максимально поляризованным. Определить угол γ между падающим и преломленным пучками. 523. Кварцевую пластику поместили между скрещенными николями. При какой наименьшей толщине dmin кварцевой пластины поле зрения между николями будет максимально просветлено. Постоянная вращения α кварца равна 27 град/мм.
524. При прохождении света через трубку длиной l 1 = 20 см, содержащую раствор сахара с концентрацией С 1 = 10%, плоскость поляризации света повернулась на угол φ1 = 13,3 0. В другом растворе сахара налитом в трубку длиной l2 = 15 см, плоскость поляризации повернулась на угол φ2=5,2 0. Определить концентрацию С второго раствора. 525. Частица движется со скоростью v = 1/3 с (где с – скорость света в вакууме). Какую долю энергии покоя составляет кинетическая энергия частицы? 526. Протон с кинетической энергией Т = 3 ГэВ при торможении потерял треть этой энергии. Определить, во сколько раз изменился релятивистский импульс протона. 527. При какой скорости β (в долях скорости света) релятивистская масса любой частицы вещества в n = 3 раза больше массы покоя? 528. Определить отношение релятивистского импульса р электрона с кинетической энергией Т = 1,53 МэВ к комптоновскому импульсу m0c электрона. 529. Скорость электрона v= 0,8с (где с – скорость света в вакууме). Зная энергию покоя электрона в мегаэлектрон-вольтах, определить в тех же единицах кинетическую энергию Т электрона. 530. Протон имеет импульс р = 469 МэВ/с. Какую кинетическю энергию необходимо дополнительно сообщить протону, чтобы его релятивистский импульс возрос вдвое? 531. во сколько раз релятивистская масса m электрона, обладающего кинетической энергией Т = 1,53 ТэВ, больше массы покоя. m0? 532. Какую скорость β (в долях скорости света) нужно сообщить частице, чтобы ее кинетическая энергия была равна удвоенной энергии покоя? 533. Вычислить истинную температура Т вольфрамовой раскаленной ленты, если радиационный пирометр показывает температуру Трад = 2,5 кК. Принять, что поглощательная способность для вольфрама не зависит от частоты излучения и равна аT = 0,35. 534. Абсолютно черное тело имеет температуру Т1 = 500 К. Какова будет температура Т2 тела, если в результате нагревания поток излучения увеличится в n = 5 раз? 535. Температура абсолютно черного тела Т = 2 кК. Определить длину волны λm, на которую приходится максимум энергии излучения, и спектральную плотность энергетической светимости (излучательности) (r λ, T) max для этой длины волны.
536. Определить температуру Т и энергетическую светимость (излучательность) Re абсолютно черного тела, если максимум энергии излучения приходится на длину волны λm = 600 нм. 537. Из смотрового окошечка печи излучается поток Фe = 4 кДж/мин. Определить температуру Т печи, если площадь окошечка S = 8 см². 538. Поток излучения абсолютно черного тела Фe = 10 кВт, максимум энергии излучения приходится на длину волны λ m = 0,5 мкм. Определить площадь S излучающей поверхности. 539. Как и во сколько раз изменится поток излучения абсолютно черного тела. Если максимум энергии излучения переместится с красной границы видимого спектра (λm1 = 780 нм) на фиолетовую (λm2 = 390 нм)? 540. Определить поглощательную способность аT серого тела, для которого температура, измеренная радиационным пирометром, Трад = 1,4 кК, тогда как истинная температура Т тела равна 3,2 кК. 541. Красная граница фотоэффекта для цинка λ0 = 310 нм. Определить максимальную кинетическую энергию Тmax фотоэлектронов в электрон-вольтах, если на цинк падает свет с длиной волны λ = 200 нм. 542. На пов6рхность калия падает свет с длиной волны λ = 150 нм. Определить максимальную кинетическую энергию Тmax фотоэлектронов. 543. Фотон с энергией ε = 10 эВ падает на серебряную пластину и вызывает фотоэффект. Определить импульс р, полученный пластиной, если принять, что направления движения фотона и фотоэлектрона лежат на одной прямой, перпендикулярной поверхности пластин. 544. На фотоэлемент с катодом из лития падает свет с длиной волны λ =200 нм. Найти наименьшее значение задерживающей разности потенциалов Umin, которую нужно приложить к фотоэлементу, чтобы прекратить фототок. 545. Какова должна быть длина волны γ-излучения, падающего на платиновую пластину, если максимальная скорость фотоэлектронов vmax = 3 Mм/с? 546. На металлическую пластину направлен пучок ультрафиолетового излучения (λ = 0,25 мкм). Фототок прекращается при минимальной задерживающей разности потенциалов U min = 0,96 В. Определить работу выхода А электронов из металла. 547. На поверхность металла падает монохроматический свет с длиной волны λ = 0,1 мкм. Красная граница фотоэффекта λ0 = 0,3 мкм. Какая доля энергии фотона расходуется на сообщение электрону кинетической энергии? 548. На металл падает рентгеновское излучение с длиной волны λ = 1 нм. Пренебрегая работой выхода, определить максимальную скорость vmax фотоэлектронов. 549. Фотон при эффекте Комптона на свободном электроне был рассеян на угол φ=π/2. Определить импульс р (в МэВ/с), приобретенный электроном, если энергия фотона до рассеяния была ε1 = 0,51 МэВ.
550. Рентгеновское излучение (λ = 1 нм) рассеивается электронами, которые можно считать практически свободными. Определить максимальную длину волны λmax рентгеновского излучения в рассеяном пучке. 551. Какая доля энергии фотона приходится при эффекте Комптона на электрон отдачи, если рассеяние фотона происходит на угол φ = π/2? Энергия фотона до рассеяния ε1= 0,51 МэВ. 552. Определить максимальное изменение длины волны (∆λ)max при комптоновском рассеянии света на свободных электронах и свободных протонах. 553. Фотон с длиной волны λ1 = 15 пм рассеялся на свободном электроне. Длина волны рассеяного фотона λ2 = 16 пм. Определить угол φ рассеяния. 554. Фотон с энергией ε1 = 0,51 мэВ был рассеян при эффекте Комптона на свободном электроне на угол φ = 180 0. Определить кинетическую энергию Т электрона отдачи. 555. В результате эффекта Комптона фотон с энергией ε1 = 1,02 МэВ рассеян на свободных электронах на угол φ = 150 0 определить энергию ε 2 рассеяного фотона. 556. Определить угол φ, на который был рассеян γ-квант с энергией ε1 =1,53 МэВ при эффекте Комптона, если кинетическая энергия электрона отдачи Т = 0,51 МэВ. 557. Определить энергетическую освещенность (облученность) Еe зеркальной поверхности, если давление, производимое излучением р = 40 мкПа. Излучение падает нормально к поверхности. 558. Давление р света с длиной волны λ = 400 нм, падающего нормально на черную поверхность, равно 2 нПа. Определить число N фотонов, падающих за время t =10 c на площадь S = 1 мм2 этой поверхности. 559. Определить коэффициент отражения (поверхности, если при энергетической освещенности Еe = 120 Вт/м2 давление р света на нее оказалось равным 0,5 мкПа. 560. Давление света, производимое на зеркальную поверхность, р = 4мПа. Определить концентрацию n0 фотонов близи поверхности, если длина волны света, падающего на поверхность, λ = 0,5 мкм. 561. На расстоянии r = 5 м от точечного монохроматического (λ = 0,5 мкм) изотропного источника расположена площадка (S = 8 мм2) перпендикулярно падающим пучкам. Определить число N фотонов, ежесекундно падающих на площадку. Мощность излучения Р = 100 Вт. 562. Свет с длиной волны λ = 600 нм нормально падает на зеркальную поверхность и производит на нее давление р = 4 мкПа. Определить число N фотонов, падающих за время t = 10 с на площадь S = 1 мм2 этой поверхности. 563. На зеркальную поверхность площадью S = 6 см2 падает нормально поток излучения Фe = 0,8 Вт. Определить давление р и силу давления F света на эту поверхность. 564. Точечный источник монохроматического (λ = 1 нм) излучения находится в центре сферической зачерненной колбы радиусом R = 10 см. Определить световое давление р, производимое на внутреннюю поверхность колбы, если мощность источника Р = 1 кВт.
Читайте также: Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|