Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Диаграммы предельных напряжений

 

Для определения предела выносливости при действии напряжений с асимметричными циклами строятся диаграммы различных типов. Наиболее распространенными из них являются:

1) диаграмма предельных напряжений, в координатах δmax — δm (диаграмма Смита);

2) диаграмма предельных амплитуд, в координатах δа — δт (диаграмма Хэя).

Рассмотрим эти диаграммы предельных напряжений. В диаграмме Смита предельное напряжение цикла, соответствующее пределу выносливости, откладывается по вертикали, среднее на­пряжение — по горизонтальной оси (рис. 12.6).

Вначале на ось δтах наносится точка С, ордината которой представляет собой предел выносливости при симметричном цикле δ-1 (при симметричном цикле среднее напряжение равно нулю). Затем эксперимен­тально определяют предел выносливости для какой-нибудь асимметричной нагрузки, например для отнулевой, у которой максимальное напряжение всегда в два раза больше среднего. На диаграмму нанесем точку Р, ордината которой представляет собой предел выносливости для отнулевого цикла δ0. Для многих материалов значения δ-1 и δ0 определены и приводятся в справочниках.

Аналогично опытным путем определяют предел выносливости для асимметричных циклов с другими параметрами.

Результаты наносят на диаграмму в виде точек А, В и т. д., ординаты которых есть пределы выносливости для соответствующих циклов напряжений. Точка D, лежащая одновременно и на биссектрисе OD, характеризует предельное напряжение (предел прочности) для постоянной нагрузки, у которой δmах = δт.

Так как для пластичных материалов опасным напряжением является также предел текучести о*.,, то на диаграмме наносится горизонтальная линия KL, ордината которой равна δт. (Для пластичных материалов, диаграмма растяжения которых не имеет площадки текучести, роль δт играет условный предел текучести δ0,2.) Следовательно, диаграмма предельных напряжений окончательно будет иметь вПД CAPKL.

Обычно эту диаграмму упрощают, заменяя ее двумя прямыми СМ и ML, причем прямую СМ проводят через точку С (соответствующую симметричному циклу) и точку Р (соответствующую отнулевому циклу).

Указанный способ схематизации диаграммы предельных напряжений предложен С. В. Серенсеном и Р. С. Кинасошвили.

В этом случае в пределах прямой СМ предельное напряжение цикла (предел' выносливости) будет выражаться уравнением

                                     (6)

или

                                           (7) где

                                             (8)

Коэффициент  характеризует чувствительность материала к асим­метрии цикла.

При расчетах на выносливость часто пользуются также диа­граммой предельных амплитуд, которая строится в координатах  —  (диаграмма Хэя). Для этого по вертикальной оси откладывают амплитудное напряжение, по горизонтальной оси — среднее (рис. 12.7).

Точка А диаграммы соответствует пределу выносливости при сим­метричном цикле, так как при таком цикле δт = 0.

Точка В соответствует пределу прочности при постоянном напря­жении, так как при этом δа = 0.

Точка С соответствует пределу выносливости при пульсирующем цикле, так как при таком цикле δа = δт.

Другие точки диаграммы соответствуют пределам выносливости для циклов с различным соотношением δа и δm.

Сумма координат любой точки предельной кривой АСВ дает величину предела выносливости при данном среднем напряжении цикла

Для пластичных материалов предельное напряжение не должно превосходить предела текучести

 

 


Поэтому на диаграмму предельных напряжений наносим пря­мую DE, построенную по уравнению

Окончательная диаграмма предельных напряжений имеет вид AKD.

На практике обычно пользуются приближенной диаграммой δа—δт, построен­ной по трем точкам А, С и D и состоящей из двух прямолинейных участков AL и LD (способ Серенсена — Кинасо-швили). Точка L получается в результате пересечения двух прямых: прямой DE и прямой АС. Расчеты по диаграмме Смита и Хэя при одинаковых способах ап­проксимации приводят к одним и тем же результатам.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...