Вторичный активный транспорт ионов.
⇐ ПредыдущаяСтр 2 из 2 Помимо ионных насосов, рассмотренных выше, известны сходные системы, в которых накопление веществ сопряжено не с гидролизом АТФ, а с работой окислительно-восстановительных ферментов или фотосинтезом. Транспорт веществ в этом случае является вторичным, опосредованным мембранным потенциалом и/или градиентом концентрации ионов при наличии в мембране специфических переносчиков. Такой механизм переноса получил название вторичного активного транспорта. Наиболее детально этот механизм рассмотрен Питером Митчелом (1966 г.) в хемиосмотической теории окислительного фосфорилирования. В плазматических и субклеточных мембранах живых клеток возможно одновременное функционирование первичного и вторичного активного транспорта. Примером может служить внутренняя мембрана митохондрий. Ингибирование АТФазы в ней не лишает частицу способности накапливать вещества за счет вторичного активного транспорта. Такой способ накопления особенно важен для тех метаболитов, насосы для которых отсутствуют (сахара, аминокислоты). В настоящее время достаточно глубоко исследованы три схемы вторичного активного транспорта. Для простоты рассмотрен транспорт одновалентных ионов с участием молекул-переносчиков. При этом подразумевается, что переносчик в нагруженном или ненагруженном состоянии одинаково хорошо пересекает мембрану. Источником энергии служит мембранный потенциал и/или градиент концентрации одного из ионов. Схемы показаны на рис. 26. Однонаправленный перенос иона в комплексе со специфическим переносчиком получил название унипорта. При этом через мембрану переносится заряд либо комплексом, если молекула переносчика электронейтральна, либо пустым переносчиком, если перенос обеспечивается заряженным переносчиком. Результатом переноса будет накопление ионов за счет снижения мембранного потенциала. Такой эффект наблюдается при накоплении ионов калия в присутствии валиномицина в энергизированных митохондриях.
Встречный перенос ионов с участием одноместной молекулы-переносчика получил название антипорта. Предполагается при этом, что молекула-переносчик образует прочный комплекс с каждым из переносимых ионов. Перенос осуществляется в два этапа: сначала один ион пересекает мембрану слева направо, затем второй ион - в обратном направлении. Мембранный потенциал при этом не меняется. Разность концентраций одного из переносимых ионов является движущей силой этого процесса. Если исходно разность концентрации второго иона отсутствовала, то результатом переноса станет накопление второго иона за счет уменьшения разности концентраций первого. Классическим примером антипорта служит перенос через клеточную мембрану ионов калия и водорода с участием молекулы антибиотика нигерицина. Совместный однонаправленный перенос ионов с участием двухместного переносчика называется симпортом. Предполагается, что в мембране могут находиться две электронейтральные частицы: переносчик в комплексе с катионом и анионом и пустой переносчик. Поскольку мембранный потенциал в такой схеме переноса не изменяется, то причиной переноса может быть разность концентраций одного из ионов. Считается, что по схеме симпорта осуществляется накопление клетками аминокислот. Калий-натриевый насос (см. рис. 27) создает начальный градиент концентрации ионов натрия, которые затем по схеме симпорта способствуют накоплению аминокислот. Из схемы симпорта следует, что этот процесс должен сопровождаться значительным смещением осмотического равновесия, поскольку в одном цикле через мембрану переносятся две частицы в одном направлении.
В процессе жизнедеятельности границы клетки пересекают разнообразные вещества, потоки которых эффективно регулируются. С этой задачей справляется клеточная мембрана с встроенными в нее транспортными системами, включающими ионные насосы, систему молекул-переносчиков и высокоселективные ионные каналы. Такое обилие систем переноса на первый взгляд кажется излишним, ведь работа только ионных насосов позволяет обеспечить характерные особенности биологического транспорта: высокую избирательность, перенос веществ против сил диффузии и электрического поля. Парадокс заключается, однако, в том, что количество потоков, подлежащих регулированию, бесконечно велико, в то время как насосов всего три (см. рис. 26). В этом случае особое значение приобретают механизмы ионного сопряжения, получившие название вторичного активного транспорта, в которых важную роль играют диффузные процессы. Таким образом, сочетание активного транспорта веществ с явлениями диффузионного переноса в клеточной мембране - та основа, которая обеспечивает жизнедеятельность клетки.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|