Раздел 3.3. Выбор исходного сейсмического импульса
Результатом решения прямой динамической задачи обычно является СВР в виде импульсных сейсмотрасс, которые затем подвергаются свертке с импульсом, моделирующим сейсмический сигнал. Успех использования СВР для целей интерпретации во многом определяется правильным выбором начального приближения этого импульса. В связи с этим в практике моделирования применяется следующая методика выбора сейсмического импульса. Основой этой методики является аналитическое выражение импульса Пузырева: , (3.1) где a 0 – начальная амплитуда (обычно a 0 = 1); w 0 = 2 p f 0 – преобладающая частота, Гц; р – затухание; j – начальная фаза. Определение начального приближения параметров этого импульса (w 0, p, j) производится следующим образом. Начальная фаза j принимается равной p /2 (симметричный импульс) на основании того, что в процессе обработки реальных сейсмических записей в результате применения всех видов фильтраций (деконволюция, полосовая фильтрация) стремятся на выходе получить элементарный сигнал симметричной формы (нуль-фазовый). Преобладающая частота f 0 находится по спектру мощности реальных записей, для чего в заданном фрагменте временного разреза по всем трассам вычисляются нормированные автокорреляционные функции, которые затем осредняются, в результате чего получается одна функция . Для этой функции, предварительно сглаженной, вычисляется спектр мощности. Квадратный корень из этого спектра принимается за осредненный амплитудный спектр сейсмического импульса. Этот спектр нормируется, и по нему находятся два параметра: преобладающая частота f 0 и ширина спектра D f на уровне 0,7.
Для определения параметра затухания р используется аналитическое выражение для нормированного амплитудного спектра импульса (3.1) в виде: . (3.2). Вначале по этой формуле при известном w 0 = 2 p f 0 и p = 5000 вычисляется амплитудный спектр теоретического импульса (3.1), по которому также на уровне 0,7 оценивается ширина спектра D f (1) (первая итерация). Это значение D f (1) сравнивается с определенным по спектру реальных сейсмозаписей значением D f, и если D f (1) > D f, то первоначальное р уменьшается, и наоборот. С новым значением р опять вычисляется по формуле (3.2) спектр F(w), по которому находится новое значение D f (2) (вторая итерация) и т. д. Шаг изменения по р вначале принимается равным 1000, а после получения "вилки" он уменьшается до тех пор, пока не будет выполнено условие |D f ( i ) – D f | £ 2 Гц, тогда значение р фиксируется. Полученные оценки w 0 и p, а также принятое значение j = p /2 используются для расчета по формуле (3.1) весовых коэффициентов фильтра для свертки с синтетическим временным разрезом в импульсном представлении. Рассмотренная, методика предназначена для определения начального приближения параметров импульса, которое, как правило, является достаточно хорошим для параметров w 0 и p, но принимаемая априори величина j = p /2 может быть весьма приближенной, поскольку на реальном временном разрезе сигнал может отличаться от нуль-фазового. Поэтому в дальнейшем в процессе итеративной коррекции параметров модели все три параметра импульса также корректируются. Раздел 3.4. Сопоставление синтетического и В соответствии с общими принципами анализа двумерных изображений сопоставляемые объекты должны быть разбиты на элементарные единицы, называемые сегментами. В нашем случае (при сравнении РВР и СВР) это понятие обозначает наименьшие элементы (D X, D t), которые сохраняют физико-геологический смысл. Конкретно: сегменты, выделяемые на сопоставляемых временных разрезах, ограничиваются по оси t интервалом с одним или двумя опорными отражениями или таким интервалом между опорными отражениями, который может представлять самостоятельный интерес для моделирования, по оси Х – участком, который характеризуется примерно одинаковым характером записи и в определенной степени соответствует понятию сейсмофации, принятому в сейсмостратиграфии. Необходимо также отметить, что процедура сегментации, являясь неформальной в принципе, выполняется интерпретатором, а те соображения, которыми он руководствуется при выделении сегментов, создают для каждого из них свой контекст при сопоставлении реального и синтетического разрезов.
Наиболее естественной и наглядной являлась бы оценка, характеризующая в целом сходство соответствующих друг другу (т. е. имеющих один и тот же физико-геологический смысл) сегментов реального и синтетического разрезов. Однако для упрощения будем сопоставлять только участки трасс, входящих в указанные сегменты. Это позволяет свести двумерную (по Х и t) задачу оценки сходства к совокупности одномерных (только по t) задач. По существу предполагается при этом, что волновое поле квазистационарно по X -координате. Переходя непосредственно к численному оцениванию сходства трасс РВР и СВР, прежде всего, выделим две группы таких оценок: 1) интегральные оценки, характеризующие общий вид сравниваемых объектов; 2) дифференциальные, характеризующие отдельные их элементы. При оценивании сходства по интегральным критериям основной операцией является интегрирование с использованием полной информации об объектах, а по дифференциальным критериям – дифференцирование, которое применяется как к объектам в целом, так и к их частям. Конкретные виды критериев сходства трасс СВР и РВР рассматриваются ниже. Отметим лишь одно, важное в методическом аспекте обстоятельство. Достаточно высокий уровень глобальных оценок сходства, построенных по интегральным и дифференциальным критериям, играет роль соответственно необходимого и достаточного условия достижения цели интерпретации. Это значит, что в процессе интерпретации при оценивании сходства с необходимостью нужно переходить от интегральных критериев к дифференциальным. Фактически это соответствует наращиванию степени детальности рассмотрения сравниваемых разрезов.
Так, при решении стратиграфических задач, вызывающих повышенный интерес в связи с проблемой прогнозирования геологического разреза, очевидно, нельзя заканчивать процесс интерпретации по достижению высокой степени сходства по интегральным критериям, поскольку геологическая сущность таких задач часто выражается в столь незначительных вариациях сейсмогеологической модели и соответствующего ей СВР, чувствительностью к которым обладают лишь дифференциальные критерии. Подобного рода чувствительность достигается усложнением процедуры оценивания сходства или построением этой процедуры на итеративно-диалоговых принципах, чем обеспечивается соответствие оценки сходства визуальным и геолого-геофизическим представлениям интерпретатора. Из рис. 7, а видно, что применение интегральных критериев требует осторожности, поскольку здесь при очевидном отсутствии визуального сходства значение интегральной оценки довольно высоко (0,84). Рис. 7, б и в демонстрируют слабую чувствительность интегрального критерия к малоамплитудным (локальным) особенностям записи: если учесть форму последнего полупериода записи, трассы на рис. 7, 6 визуально более похожи между собой, чем трассы на рис. 7, в. Однако значения сходства по НФВК противоречат этому суждению. Рис. 7, г, д и е иллюстрируют тот факт, что числовые значения интегральных и дифференциальных оценок могут отличаться весьма существенно. Кроме принципиальной разницы в подходах к оцениванию сходства, это объясняется еще и тем, что при вычислении дифференциальных оценок учитывается качественная информация от геофизика-интерпретатора. Так, выполнив стратиграфическую привязку отражений, он может выделить отражения, являющиеся целевыми в решаемой им геологической задаче, и задать их как наиболее важные при оценивании сходства.
Главной методической целью получения оценок сходства является выделение на каждом шаге итеративного процесса интерпретации тех трасс СВР и РВР, сходство между которыми ниже принятого на данном шаге порога. Наличие протяженных участков СВР, характеризующихся пониженными значениями оценок сходства, указывает на необходимость коррекции соответствующего фрагмента сейсмогеологической модели (иногда вплоть до перехода к другой гипотезе о строении геологического разреза). Раздел 3.5. Целенаправленная коррекция параметров Как и ранее, будем ориентироваться на класс комбинированных моделей геологических сред, введенный в гл. 2. Напомним, что такие модели состоят из собственно моделируемого интервала, представленного совокупностью тонких слоев, и толстослоистой покрывающей части. В число корректируемых параметров включаются скорости, плотности и мощности тонких слоев, а также параметры импульса, моделирующего сейсмический сигнал. Из методических соображений разделим процесс оптимизации целевой функции, связывающей оценки сходства с параметрами сейсмомоделирования, на два этапа: 1) предварительная коррекция, выполняемая в диалоговом режиме, когда в процессе коррекции предполагается постоянное и непосредственное участие геофизика-интерпретатора; 2) уточнение параметров моделей в автоматическом режиме путем оптимизации некоторого функционала, описывающего сходство трасс реального и синтетического временных разрезов. Предварительная коррекция
На этапе предварительной коррекции осуществляется сравнительно грубый подбор параметров модели в диалоговом режиме. Наличие данного этапа позволяет не вводить каких-либо ограничений на величину отклонения параметров модели нулевого приближения от искомого решения. Но вместе с тем если при первой оценке сходства (визуальной или по НФВК) синтетического и реального временных разрезов обнаруживается явное их несходство, то ставится вопрос об изменении модели в целом или о переходе к другой гипотезе о геологическом строении разреза. Методической основой предварительной коррекции являются следующие положения: 1) при коррекции используются данные о сравнительной чувствительности динамических характеристик записи к изменению параметров тонкослоистой модели, полученные с помощью метода статистических испытаний; 2) в целях ограничения области поиска глобального экстремума из первого этапа исключается и переносится на второй этап коррекция двух параметров исходного импульса (р, j) и в некоторых случаях коррекция толщин слоев;
3) для коррекции систематического отклонения толщин или скоростей в слоях, выражающегося в растяжении или сжатии трасс синтетического разреза, применяются формулы, которые учитывают значения первоначальной скорости и толщины слоя; 4) на каждом шаге коррекции используются результаты сравнения СВР и РВР по НФВК, которые в конце предварительной коррекции могут дополняться сравнением по частным критериям (графики амплитуд и энергий, частотные спектры и др.) или с помощью дифференциальной оценки сходства. Рассмотрим подробнее перечисленные положения.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|