Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

РНК и их роль в биосинтезе белка.




САМАРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ

КАФЕДРА МЕДИЦИНСКОЙ БИОЛОГИИ, ГЕНЕТИКИ И ЭКОЛОГИИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Для преподавателей лечебного, педиатрического, стоматологического, медико-профилактического факультетов.

ТЕМА: Организация наследственной информации у про- и эукариот и ее реализация в признак.

Составители: Л.Н. Самыкина;

И.В. Федосейкина.

Самара 2009

ПРИЛОЖЕНИЕ.

10. ИНФОРМАЦИЯ*.

Для того, чтобы понять истинную сущность генетики, необходимо рассматривать действие генов сначала на уровне отдельной клетки и только потом на уровне целого организма. Поэтому прежде, чем пытаться ответить на вопрос о том, каким образом гены родительских клеток управляют процессом образования целого организма будущего ребенка, следует объяснить те механизмы, с помощью которых гены управляют образованием клеточных структур и компонентов при последовательных циклах роста и деления клеток. Иными словами, нужно рассмотреть основную биологическую проблему – как происходит рост и воспроизведение с точки зрения управляемого генами химического синтеза нового клеточного материала. Для выяснения этого вопроса необходимо изучить химическую природу наследственного материала.

В 1869 году Фридрих Мишер обнаружил в ядре особое вещество, обладавшее кислыми свойствами и назвал его нуклеин. В 1889г. Альтман ввел термин нуклеиновые кислоты. А Коссель установил, что в состав нуклеиновых кислот входят азотистые основания (аденин, гуанин, цитозин, тимин и урацил – первые из них относятся к пуриновым, а последние к пиримидиновым азотистым основаниям), остаток фосфорной кислоты и сахара, содержащего пять атомов углерода.

 
Последующий анализ проведенный П. Левеном и У. Джонсоном, показал, что существует два крайне различных типа нуклеиновых кислот, названные ДНК и РНК. В ДНК углевод представлен дезоксирибозой, в РНК – рибозой. Кроме того в РНК нет тимина, вместо него урацил. Азотистое основание, углевод и фосфорная кислота связаны друг с другом, образуя нуклеотид. Часть нуклеотида, состоящая из соединенных между собой азотистого основания и углевода (без фосфата), называется нуклеозидом.

В 1924 г. Р. Фельген разработал методы цитологического распознавания ДНК и РНК. Он доказал, что ДНК находится в ядре, а РНК в цитоплазме. В 1934 г. Т. Касперссон показал, что ДНК является главной составляющей частью хромосом, в которых она связана с белком.

ДНК- носитель генетической информации в клетке.

В истории доказательства роли ДНК особую роль сыграли опыты Гриффитса по трансформации у бактерий. Опираясь на опыты Гриффитса О. Эвери, К. Мак-Леод и М. Мак-Карти доказали, что генетические особенности бактерий, связанные с явлением трансформации, обусловлены свойствами молекул ДНК.

Публикации выводов Эвери, Мак-Леода и Мак- Карти в 1944 году о роли нуклеиновых кислот вызвали большой интерес среди ученых всего мира.

В 1948 году Хочкисс и Э. Чаргафф применили новый по тем временам метод хроматографии на бумаге для разделения и количественной оценки нуклеиновых кислот. В последствии результаты своей работы Эрвин Чаргафф опубликовал и они стали известны как правила соответствия или правила комплементарности Чаргаффа (в 1950г ему была присуждена Нобелевская премия).

1) Количество пуриновых оснований равно количеству пиримидиновых оснований (А+Г=Т+Ц).

2) Количество пуринового основания Аденин = количеству пиримидинового основании Тимин (А=Т).

3) Количество пуринового основания Гуанин = количеству пиримидинового основании Цитозин (Г=Ц).

4) Отношение Аденина и Тимина к Гуанину и Цитозину является величиной постоянной и является важнейшим генетическим критерием вида:

А+Т/Г+Ц= const.

У человека этот коэффициент специфичности равен 1,53

Структура ДНК по Уотсону и Крику.

Успешное использование рентгеноструктурного анализа для изучения биологической макромолекулы дало ключ к разгадке структуры ДНК.

Одним из первых исследователей, высказавшим некоторые соображения о трехмерной структуре ДНК, был Астбюри (именно он в начале 40-х годов ввел термин «молекулярная биология»). Три группы ученых продолжили работу Астбюри по изучению ДНК, с помощью рентгеноструктурного анализа. Первую группу возглавил Полинг, их работа не увенчалась успехом. Вторую группу возглавил Уилкинс, его сотрудница Розалинда Франклин смогла выделить высокоориентированные нити ДНК, которые позволили получить качественную рентгенограмму ДНК. На ней было видно, что ДНК состоит из двух цепей. Кроме того, с ее помощью был подтвержден факт расстояния между нуклеотидами в 3,4 А.

В 1953 году эту рентгенограмму увидели Джеймс Уотсон и Френсис Крик, которые возглавляли третью группу ученых.

Основываясь на данных Чаргаффа и материалах рентгеноструктурного анализа, Уотсон и Крик пришли к следующим выводам:

1) молекула ДНК – это биополимер, мономером которой является нуклеотид;

2) молекула ДНК состоит из двух полинуклеотидных цепей, взаимно обвитых одна вокруг другой

3) ДНК имеет форму правильной спирали;

4) спираль имеет диаметр около 20А;

5) спираль делает один полный оборот каждые 34А вдоль оси и, поскольку межнуклеотидное расстояния равно 3,4 А, содержит десять нуклеотидов на 1 оборот.

6) для того, чтобы двухцепочечная спираль имела постоянный диаметр должна существовать комплементарная взаимосвязь между двумя нуклеотидными рядами (на против пуринового основания должно быть пиримидиновое: А-Т; Г-Ц)

7) для обеспечения термодинамической стабильности спирали должны возникать водородные связи между пуриновыми и пиримидиновыми основаниями (между аденином и тимином две водородные связи, между гуанином и цитозином три.)

Исходя из этих условий они построили модель.

ДНК представляет собой спираль из двух скрученных одна вокруг другой полинуклеотидных цепей, причем цепи эти антипараллельные.

Двойственность в молекуле ДНК объясняло принципы самовоспроизведения молекул на основе матричного синтеза. Специфика взаимоположений азотистых оснований в молекуле ДНК стало трактоваться как генетический код.

ДНК и хромосомы. Доказательства генетической функции ДНК.

Генетическая функция ДНК впервые была доказана в опытах Эвери.

1) Содержание ДНК в любой клетке или организме строго постоянно и не зависит от условий внешней среды.

2) Чем сложнее организм, тем больше ДНК содержится в его клетках. Бактерии около 0,01* 10-6 мкг ДНК на клетку. Высшие организмы 6* 10-9 мкг на клетку.

3) Бактериофаги, имеют лишь несколько генов и содержат очень мало ДНК и поэтому они часто используются для экспериментов. для определения генетической функции ДНК.

Нуклеотидный состав ДНК

1) Препараты ДНК разных тканей одного организма имеет одинаковый нуклеотидный состав.

2) Нуклеотидный состав разных видов различен. Он не зависит от внешний условий.

3) ДНК близкий видов имеет весьма сходный состав.

Одним из важнейших функциональных элементов наследственного материала является хромосома.

Структурной основой хромосом служит комплекс ДНК-гистон. ДНК связана с гистонами ионными связями. Гистоны, входящие в состав эукариотических клеток это основные белки, с положительным зарядом. В настоящее время известно 5 фракций гистоновых белков, входящих в состав хроматина: гистоны Н1, Н2а,Н2в, Н3, Н4. Эти белки способны образовывать вместе с ДНК нуклеопротеид или первый уровень компактизации хроматина – нуклеосомы. Прохождение клеткой своего жизненного цикла связано с развертыванием и деспирализации хромосом в конце деления и спирализацией и скручиванием хромосом в начале деления. В начале деления из нуклеосом в результате спирализации и компактизации образуются нуклеомеры, из нуклеомер- хромомеры, из хромомер- хромонемы, а из хромонем- хромосомы. Образование хромосом в начале деления необходимо: во-первых для более правильного распределения генетической информации между дочерними клетками, во- вторых только в состоянии хромосомной организации между гомологичными хромосомами возможно прохождение коньюгации и кроссинговера во время образования гамет. Следовательно этот процесс является не только механизмом поддержания постоянства число хромосом, но и способствует перекомбинации генетической информации и увеличения комбинативной изменчивости.

При всей сложности организации хромосом показано, что главным субстратом, в котором содержится генетическая информация является ДНК. Во время интерфазы ядро находится в состоянии наивысшей метаболической и синтетической активности. Во время интерфазы проявляется действие генов, происходит ауторепродукция ДНК, синтез всех видов РНК и биосинтез белка.

Для того, чтобы ответить на вопрос о том каким образом информация, закодированная в ДНК и обеспечивающая соединения аминокислот в специфической последовательности, попадает при синтезе белка в рибосомы необходимо более подробно рассмотреть строение и функции и других нуклеиновых кислот.

 

РНК и их роль в биосинтезе белка.

РНК представляет собой одноцепочную полинуклеотидную цепь. Роль РНК в биосинтезе белка огромна. ДНК стабильна, она всё время находится в хромосомах или в другой структуре и не выходит за их пределы. Информация заложенная в ДНК, которая служит матрицей при определении специфичности полипептида должна каким то образом реализоваться в клетке. Поэтому значительно большую роль при биосинтезе белка играют четыре типа различных РНК.

Основное химическое различие между ДНК и РНК состоит в том, что в РНК углеводом нуклеотидов является рибоза и одним из 4-х азотистых оснований служит не тимин, а урацил. Оказалось, что эти два довольно незначительных химических различия (дополнительная гидроксильная группа в углеводе РНК и дополнительная метильная группа в одном из пиримидинов ДНК) имеет большое значение для биологической роли, выполняемой этими двумя полинуклеотидами.

 

Информационная (матричная) РНК

Допущение, что ДНК сама управляет процессом построения нити полипептида, в общем случае не может быть правильным. На первой стадии каждый участок (ген) ДНК служит матрицей для синтеза молекул РНК, на которой совершенно точно транскрибируется (переписывается) последовательность нуклеотидов соответствующего гена и, следовательно, закодированная в них информация о последовательности аминокислот. Затем молекулы РНК перемещаются в цитоплазму, где их нуклеотидная последовательность транслируется (переводится) в полипептидную цепь с предетерминированной первичной структурой.

Образование информационной РНК происходит в результате транскрипции. Механизм транскрипции значительно прояснился после открытия в 1960 г. С. Вейссом, Ж. Гурвицем и О. Стивенсом фермента РНК-полимеразы.

В присутствии ДНК матрицы РНК- полимераза катализирует превращение рибонуклеозидтрифосфатов в полирибонуклеотидную цепь. АТФ, ГТФ, ЦТФ и УТФ полимерезуются в РНК за счет образования эфирной связи между ближайшими к рибонуклеотиду 5, -фосфатом и 3, -гидроксильной группой другого нуклеозидтрифосфата с одновременным соединением остальных двух фосфатов в виде неорганического пирофосфата.

Матрицей для синтеза м-РНК может служить только одна цепь ДНК. Это определяется ходовой последовательностью нуклеотидов промотора (участка ДНК с которым соединяется РНК- полимераза), такая цепь называется кодогенной (3`-5`). Это означает, что каждое пуриновое и пиримидиновое основание ДНК- матрицы должно присоединить и удерживать (за счет специфических водородных связей) свободный нуклеотид, несущий комплементарное пуриновое или пиримидиновое основание.

После того, как транскрибированная молекула РНК покидает ДНК- матрицу, чтобы быть использованной при синтезе белка, две расплетенные нити ДНК снова соединяются. Позади молекулы РНК- полимеразы немедленно восстанавливается структура ДНК. Удлинение молекулы м-РНК продолжается до тех пор, пока фермент не встретит на своём пути специфическую нуклеотидную последовательность ДНК – терминатор транскрипции (стоп-сигнал). В этой точке полимераза отделяется от матричной ДНК и от вновь синтезированной молекулы РНК.

Завершённая цепь РНК отделяется от ДНК матрицы в виде свободной одноцепочечной молекулы.

В клетках высших эукариот большинство РНК, прежде чем покинуть ядро и перейти в цитоплазму в виде м -РНК, претерпевают существенные изменения.

У эукариотов в процессе транскрипции синтезируется незрелая или про м-РНК. Она является точной копией одной из цепей ДНК, и также как и ДНК содержит неинформационные участки- интроны и информационные участки- экзоны. Биологический смысл образования про м-РНК у эукаориот заключается в образовании нуклеиновой кислоты, которая является точной копией ДНК. Однако в ДНК в процессе редупликации могут происходить различные изменения, не всегда полезные для организма. К сожалению эти изменения возникающие в экзонах сохраняются и могут передаваться будущим поколениям, а мутации возникающие в интронах не передаются, так как они удаляются в процессе созревания м РНК.

Для созревания м-РНК происходит сплайсинг. Сплайсинг - это удаление с помощью фермента последовательностей РНК, соответствующих интронам и соединение с помощью фермента лигазы экзонов. Следовательно можно предположить, что наличие интронной последовательности в ДНК является своеобразной защитой организма от мутаций. Далее м-РНК выходит из ядра и направляется к месту биосинтеза белка - рибосомам. Биологический смысл процессинга или созревания м-РНК заключается в получении биологически активной нуклеиновой кислоты, которая способна нести генетическую информацию к месту синтеза. Только в таком виде, освобождаясь от интронов м-РНК может выйти из ядра.

Как же функционируют рибосомы, обеспечивая правильный перенос информации от матричной РНК? Рибосомы - рибонуклеопротеидные частицы, так они были названы Робертсом. Рибосомы прокариотов имеют диаметр около 20 нм и содержат вдвое больше р-РНК, чем белка. Константа седиментации у них порядка 30S и 50 S. Рибосомы эукариотов несколько больше по размерам, а относительное содержание РНК меньше. Константа седиментации у них порядка 70 и 80 S Структурные исследования рибосом показали, что они состоят из двух субъединиц, и что обе субъединицы содержат р-РНК и белок. Соединение субъединиц рибосом вместе происходит во время трансляции, при наличии м-РНК и большого количества ионов магния.

Рибосомная РНК высших организмов седиментирует как два отдельных компонента 18s и 28s. Меньшая молекула РНК как позднее было доказано входит в состав малой субъединицы рибосомы, а большая в состав большой субъединицы.

Рибосомы являются именно тем местом, где происходит сборка аминокислот в полипептиды. Этот было подтверждено в лаборатории Пола Замечника в Главном Массачусетском госпитале. Там была разработана воспроизводимая бесклеточная система, содержащая рибосомы, аминокислоты и АТФ, которая включала аминокислоты в белки. Используя эту систему, Хогленд сделал два важных открытия. Во- первых, он показал, что аминокислоты сначала активируются АТФ, образуя богатые энергией комплексы аминокислота- АМФ. Во-вторых, он показал, что активированные аминокислоты затем переносятся на молекулы т-РНК в активированной форме. Эти соединения (аминоацил- т-РНК) затем функционируют как непосредственные промежуточные соединения при образовании пептидной связи. Вскоре после открытия т- РНК было установлено, что молекулы т- РНК специфичны для определенной аминокислоты.

Для белкового синтеза необходимо 2 фактора: термолабильный и термостабильный. Термостабильный низкомолекулярный фактор назвали т- РНК. Аминоацил т-РНК связывается с рибосомой и служит донором аминоацильного остатка, что приводит к удлинению полипептидной цепи.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...