Расчет ВЧ-цепи выходного усилителя мощности
Прежде чем согласовывать транзистор с чем-либо, рассмотрим входную и выходную цепи транзистора. Измерения и транзисторов в различных диапазонах частот показали [7], что входное сопротивление можно аппроксимировать полным сопротивлением последовательной цепи из активного сопротивления , индуктивности и емкости (Рисунок 12) резонансная частота которой может быть больше или меньше рабочей частоты усилителя. Выходное сопротивление хорошо аппроксимируется полным сопротивлением параллельной цепи из , , , как это показано на Рисунок 12. Рисунок 12 Входная и выходная цепи транзистора Для многих транзисторов, работающих в дециметровом диапазоне волн, с достаточной степенью точности соответствует сопротивлению последовательной цепи из , , а - сопротивлению параллельной цепи из , . В общем случае СВЧ-цепи могут быть представлены в виде составленных из реактивных элементов четырехполюсников. Назначение СВЧ-цепей заключается в следующем: 1. Обеспечить колебательное напряжение (или ток) определенной частоты, амплитуды и фазы, необходимое для работы транзистора в выбранном энергетическом режиме. 2. Передать с возможно малыми потерями СВЧ-мощность, подводимую к генератору, на вход транзистора, а мощность, отдаваемую транзистором, в нагрузку. Для получения выбранного энергетического режима транзистора на его входе и выходе необходимо обеспечить требуемую величину сопротивлений по первой гармонике тока, которые известны из расчета режима транзистора. При этом сопротивление и сопротивление согласующей цепи в точках подключения будут комплексно-сопряженными величинами. В выходной СВЧ-цепи в режиме согласования сопротивление согласующей цепи в точках подключения является комплексно-сопряженной величиной сопротивления .
Входная согласующая СВЧ-цепь. Согласно эквивалентной схеме входной цепи транзистора, показанной на Рисунок 12, сопротивление будет: Реактивная составляющая этого сопротивления может иметь как индуктивный характер (на рабочей частоте более высокой, чем резонансная частота входной цепи транзистора), так и емкостной (на рабочей частоте более низкой, чем резонансная частота входной цепи). Для многих современных транзисторов средне и большой мощности, работающих в дециметровом диапазоне волн, величина сопротивления существенно меньше сопротивления и поэтому можно приближенно принять, что: и эквивалентная схема входной цепи состоит только из элементов и . Выходная согласующая СВЧ-цепь. Сопротивление нагрузки в общем случае: где и - соответственно активная и реактивная составляющая сопротивления . Полное сопротивление по первой гармоники согласно эквивалентной схеме выходной цепи транзистора, показанной на Рисунок 12, равно сопротивлению параллельной цепи из , , . При расчете выходной цепи транзистора бывает удобнее пользоваться вместо сопротивления полной проводимостью , которую можно представить как где и - соответственно активная и реактивная составляющие проводимости . Характер реактивной составляющей проводимости можно определить расчетом для известных значений и . Для большинства современных транзисторов дециметрового диапазона волн реактивная составляющая выходной проводимости имеет емкостной характер. Поэтому можно приближенно принять, что: и эквивалентная схема выходной цепи состоит только из элементов и . Согласующее звено, может иметь вид, показанный на Рисунок 13. Рисунок 13 Общая схема П-образной цепи Возьмем в качестве согласующей СВЧ-цепи П-образную цепь, так как выбор более простой Г-образной цепи невозможен из-за невыполнения необходимого условия [4]. П-образую цепь можно рассматривать как две Г-образные цепи (Г-звенья), включенные навстречу друг другу [8] (Рисунок 13) причем каждое из Г-звеньев должно иметь реактивные сопротивления и противоположного знака.
Расчет П-образной цепи между транзистором 2Т919А и нагрузкой (50 Ом). Зададимся величиной добротности первого Г-звена и величинами входного, выходного сопротивлений транзистора соответственно. Зная, необходимое сопротивление нагрузки найдем выходное сопротивление транзистора.
Тогда исходя из эквивалентной выходной схемы транзистора (Рисунок 12):
Входное сопротивление нагрузки пусть будет равным , добротность возьмем равной (добротность целесообразно брать не более 2 ¸ 3) [4]. Определим действующее сопротивление [4]:
при этом необходимое условие выполняется. Определим реактивные составляющие:
Рассчитаем необходимую величину добротности второго Г-звена:
Определим реактивное сопротивление:
Возьмем в качестве согласующей СВЧ-цепи П-звено как показано на Рисунок 14, воспользовавшись советами, написанными в пособии [4]. Реактивное параллельное сопротивление с учетом выходного реактивного сопротивления транзистора 2Т919А:
Реактивное последовательное сопротивление:
Реактивное параллельное сопротивление:
Величины индуктивности и емкости:
Рисунок 14 П-образная цепь К.П.Д. П-звена, где - активное сопротивление потерь в катушке индуктивности, - собственная добротность катушки обычно равна 50 ¸ 100. Пусть , тогда:
Расчет цепи питания Цепь питания должна быть построена таким образом, чтобы не нарушать работы его СВЧ-цепи. Наиболее часто применяется параллельная схема питания (Рисунок 15), обусловленная обычно схемой построения СВЧ-цепи, не позволяющей использовать последовательную систему питания. При параллельной системе питания источник постоянного напряжения подключают к зажимам транзистора через блокировочный дроссель , имеющий большое сопротивление для переменной составляющей тока, с тем чтобы источник не влиял на работу СВЧ-цепи. Так как в практических схемах все же некоторая часть переменного тока будет проходить в цепь питания и, попав в источник напряжения, может создать паразитную связь между отдельными каскадами передатчика, то обычно предусматривают блокирование источника напряжения конденсатором, имеющим малое сопротивление переменному току (конденсатор ). Для исключения прохождения постоянной составляющей тока в нагрузочную цепь в схему включают разделительный конденсатор . Нередко функцию разделительного конденсатора выполняет последовательно включенный конденсатор СВЧ-цепи (Рисунок 17). Выбор величины индуктивности дросселя и блокировочных конденсаторов производят, исходя из требований нормальной работы схемы усилителя и возможности реализации блокировочных элементов [4].
Рисунок 15 Схема параллельной системы питания Для дальнейшего расчета цепи питания нам потребуется знать и ( было определено выше). Так, предъявляя к блокировочному дросселю (Рисунок 15) требование не оказывать заметного влияния на работу выходной цепи транзистора, выбор величины его индуктивности можно производить, использую приближенное соотношение, где - частота:
Исходя из полученного неравенства, возьмем . Величина блокировочного конденсатора , включенного параллельно источнику питания , должна удовлетворять примерному соотношению:
Исходя из полученного неравенства, возьмем . Соотношение получено из условия, что собственная частота последовательного резонанса цепи , будут значительно ниже рабочей частоты транзистора. Верхний предел значений индуктивности и емкости в основном ограничивается технологической возможностью. Для определения примерной величины блокировочного элемента , входящего во входную цепь усилителя, можно воспользоваться соотношением: , Исходя из полученного неравенства, возьмем . Величина емкости разделительного конденсатора (если он не является элементом СВЧ-цепи) определяется из условия малого по сравнению с напряжением на сопротивлении (Рисунок 15) напряжения на конденсаторе при протекании через него тока основной частоты т.е.
Исходя из полученного неравенства, возьмем . При проектировании цепей питания следует иметь в виду, что блокировочные дроссели и конденсаторы образуют колебательные системы, нередко приводящие к возникновению в усилителе паразитных колебаний на частоте значительно более низкой, чем рабочая частота. Этому явлению способствует увеличение коэффициента усиления по току транзистора с уменьшением его рабочей частоты. Для предотвращения этих колебаний необходимо снизить добротность блокировочных дросселей, что может быть достигнуто, например, включением последовательно с дросселем небольшого резистора сопротивлением порядка нескольких Ом, либо изготовлением катушки из проводника с высоким омическим сопротивлением. Другой способ срыва колебаний на низких частотах – включения последовательно с конденсаторов различных номиналов, создающих последовательные резонансы в цепи питания на определенных частотах, существенно ниже рабочей.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|