Метод непрерывных испытаний
Кафедра РЭС РЕФЕРАТ на тему: «Метод непрерывных испытаний. Графический метод. Испытания на ремонтопригодность» МИНСК, 2008 Метод непрерывных испытаний
Сущность данного метода испытаний заключается в непрерывном отборе и постановке изделий на испытания в течение контролируемого периода. При этом изделия отбирают равными группами через равные промежутки времени: t '= t КП /к, (1) где t кп - контролируемый промежуток времени, к - число групп изделий. К=n/ni, (2) где n - объем выборки, необходимый для подтверждения значения P2 за время tr, ni - число изделий в каждой группе. Группа изделий снимается с испытаний по истечении времени tr. Оценка результатов непрерывных испытаний производится после окончания испытаний последней группы. Если суммарное число отказавших изделий во всех группах за время tи не превышает приемочного числа С - то это означает, что заданная вероятность P 2 безотказной работы обеспечивается. Основной недостаток метода - большие затраты времени для получения результатов. Данный метод применяется, в основном, для отработанного ТП. При этом все изделия, изготовленные за оцениваемый период времени можно рассматривать как единую партию, а последовательные выборки из партии - как групповые выборки.
Графический метод планирования испытаний
Основан на использовании семейства кривых распределения Пуассона, характеризующих зависимость вероятности числа и отказавших изделий, меньшего приемочного числа С (или равного ему), от значения параметра а. Графически зависимость p (d < C)= f (a) представлена на рис. 1 семейством
Рис. 1 – Зависимость вероятности отказа d изделий, распределенной по закону Пуассона, от параметра а
Кривых для различных значений С. Значение параметра а с достаточной точностью описывается выражением а- = nQ, где Q — вероятность отказа. Величина а есть математическое ожидание случайной величины — числа и отказавших изделий. Приведенные на рис. 1 кривые являются аккумулированными (накопленными). Например, для значения a =2 вероятность отказа трех и менее изделий состав-т 91 %, а двух (и менее) изделий — примерно 75%. Следовательно, разность этих двух значений равна вероятности отказа трех изделий, т.е. 16%. Таким образом, рассмотренные кривые могут быть использованы для определения вероятности числа отказавших изделий и для расчета планов контроля, которые формируют по одному (Р2) или по двум (Р1 и Р2) заданным значениям вероятности безотказной работы. План контроля по заданному значению Р2 составляют при определенных значениях t г и β. Для определения необходимого объема выборки задаются значением приемочного числа С. Далее по графику распределения Пуассона находят точку пересечения кривой, соответствующей выбранному значению С, с горизонтальной линией, которая представляет вероятность появления числа отказов d <С (эта вероятность равна заданному риску β заказчика). Проекция точки пересечения на ось абсцисс дает величину а = nQ. Разделив полученное значение а на заданное значение (Q 2 =1-Р2), ≠ рассчитывают объем выборки для испытания в течение времени t и = t г: n = a /(1- P 2) (3) Более точное значение п можно получить из соотношения п=С/2 + а(1 + P 2)/[2 (1 - P 2)]. (4) Поскольку формулы (3) и (4) дают мало отличаются друг от друга результаты, на практике обычно применяют более простую для расчета п формулу (3). План контроля по двум заданным знаменисоставляют при соответствующих значениях рисунков Р1 Р2 Приемочное число С и необходимый объем выборки n определяют по графику распределения Пуассона (рис.2.10) Для этого находят точку пересечения кривой при С = 0 с горизонтальной линией, представляющей, вероятность того, что в выборке при заданном риске а изготовителя имеются отказавшие изделия т. е. р(d>С)=1-a.
Проекция этой точки на ось абсцисс дает значение a 1 =п Q 1. Деля полученное значение a 1 на Q 1 = 1- P 1, получают необходимый объем выборки n '. Точно так же находят точку пересечения той же кривой р(а) для С=0 с горизонтальной линией, представляющей вероятность отсутствия отказавших изделий в выборке при заданном риске заказчика (р = β). При этом на оси абсцисс получают значение а2 = n " Q 2. Деля значение а 2 на Q2=1-Р2, определяют объем выборки п". Если значения n ' и n" не равны, то расчет повторяют, но уже для кривой р(а) при С=1. Если полученные значения n ' и п" опять окажутся неравными, переходят на кривую р(а) с большим значением С и так до тех пор, пока не будет найдена кривая, для которой значения п' и п" совпадут. Приемочное число С выбирают соответствующим найденной кривой р(а), а объем выборки п = п' = п". Однако не всегда можно добиться равенства значений п' и п" при заданных а и β. Поэтому должно быть принято решение, как велики могут быть эти риски. Если желательно поддержать заданный риск изготовителя, то при неравенстве п'≠п" следует принять объем выборки, полученный исходя из риска изготовителя, т.е. n = п'. Тогда риск заказчика можно найти с помощью графика распределения Пуассона, предварительно вычислив величину а2 = п'(1—Р2). Если заказчика устроит полученный риск, задачу можно считать решенной. В противном случае объем выборки необходимо изменить для лучшего приближения к желаемому результату. Значение рисков заказчика и поставщика можно сделать равными, усредняя те два неравных объема выборки, которые лучше всего удовлетворяют поставленным условиям.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|