Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Метод непрерывных испытаний

Кафедра РЭС

РЕФЕРАТ

на тему:

«Метод непрерывных испытаний. Графический метод. Испытания на ремонтопригодность»

МИНСК, 2008


Метод непрерывных испытаний

 

Сущность данного метода испытаний заключается в непрерывном отборе и постановке изделий на испытания в течение контролируемого периода. При этом изделия отбирают равными группами через равные промежутки времени:

t '= t КП, (1)

где t кп - контролируемый промежуток времени, к - число групп изделий.

К=n/ni, (2)

где n - объем выборки, необходимый для подтверждения значения P2 за время

tr,

ni - число изделий в каждой группе.

Группа изделий снимается с испытаний по истечении времени tr. Оценка результатов непрерывных испытаний производится после окончания испытаний последней группы.

Если суммарное число отказавших изделий во всех группах за время tи не превышает приемочного числа С - то это означает, что заданная вероятность P 2 безотказной работы обеспечивается.

Основной недостаток метода - большие затраты времени для получения результатов. Данный метод применяется, в основном, для отработанного ТП.

При этом все изделия, изготовленные за оцениваемый период времени можно рассматривать как единую партию, а последовательные выборки из партии - как групповые выборки.

 

Графический метод планирования испытаний

 

Основан на использовании семейства кривых распределения Пуассона, характеризующих зависимость вероятности чис­ла и отказавших изделий, меньшего приемочного числа С (или равного ему), от значения параметра а. Графически зависимость p (d < C)= f (a) представлена на рис. 1 семейством

 

Рис. 1 – Зависимость вероятности отказа d изделий, распреде­ленной по закону Пуассона, от параметра а

Кривых для различных значений С. Значение параметра а с достаточной точностью описывается выражением а- = nQ, где Q — вероятность отказа. Величина а есть математическое ожидание случайной величины — числа и отказавших изделий.

Приведенные на рис. 1 кривые являются аккумулированными (накопленными). Например, для значения a =2 вероятность отказа трех и менее изделий состав-т 91 %, а двух (и менее) изделий — примерно 75%. Следовательно, разность этих двух значений равна вероятности отказа трех изделий, т.е. 16%.

Таким образом, рассмотренные кривые могут быть использованы для определения вероятности числа отказавших изделий и для расчета планов контроля, которые формируют по одному 2) или по двум 1 и Р2) заданным значениям вероятности безотказной работы.

План контроля по заданному значению Р2 составля­ют при определенных значениях t г и β. Для определения необходимого объема выборки задаются значением приемочного числа С.

  Далее по графику распределения Пуассона находят точку пересечения кривой, со­ответствующей выбранному значению С, с горизонтальной линией, которая представляет вероятность появления числа отказов d <С (эта вероятность равна заданному риску β заказчика).

Проекция точки пересечения на ось абсцисс дает величину а = nQ. Разделив полученное значение а на заданное значение (Q 2 =1-Р2), рассчитывают объем выборки для испытания в течение времени t и = t г:

n = a /(1- P 2) (3)

Более точное значение п можно получить из соотношения

п=С/2 + а(1 + P 2)/[2 (1 - P 2)]. (4)

Поскольку формулы (3) и (4) дают мало отличаются друг от друга результаты, на практике обычно применяют более простую для расчета п формулу (3).

План контроля по двум заданным знаменисоставляют при соответствующих значениях рисунков Р1 Р2

Приемочное число С и необходимый объем выборки n определяют по графику распределения Пуассона (рис.2.10) Для этого находят точку пересечения кривой при С = 0 с горизонтальной линией, представляющей, вероятность того, что в выборке при заданном риске а изготовителя имеются отказавшие изделия т. е. р(d>С)=1-a.

Проекция этой точки на ось абсцисс дает значение a 1 =п Q 1. Деля полученное значение a 1 на Q 1 = 1- P 1, получают необходимый объем выборки n '. Точно так же находят точку пересечения той же кривой р(а) для С=0 с горизонтальной линией, представляющей вероятность отсутствия отказавших изделий в выборке при заданном риске заказчика (р = β). При этом на оси абсцисс получают значение а2 = n " Q 2. Деля значение а 2 на Q2=1-Р2, определяют объем выборки п".

Если значения n ' и n" не равны, то расчет повторяют, но уже для кривой р(а) при С=1. Если полученные значения n ' и п" опять окажутся неравными, переходят на кривую р(а) с большим значением С и так до тех пор, пока не будет найдена кривая, для которой значе­ния п' и п" совпадут. Приемочное число С выбирают соответствующим найденной кривой р(а), а объем выборки п = п' = п".

Однако не всегда можно добиться равенства значений п' и п" при заданных а и β. Поэтому должно быть принято решение, как велики могут быть эти риски.

Если желательно поддержать заданный риск изготовителя, то при неравенстве п'≠п" следует принять объем выборки, полученный исходя из риска изготовителя, т.е. n = п'. Тогда риск заказчика можно найти с помощью графика распределения Пуассона, предварительно вычислив величину а2 = п'(1—Р2).

Если заказчика устроит полученный риск, задачу можно считать решенной. В противном случае объем выборки необходимо изменить для лучшего приближения к желаемому результату. Значение рисков заказчика и поставщика можно сделать равными, усредняя те два неравных объема выборки, которые лучше всего удовлетворяют поставленным условиям.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...