Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Обратный пьезоэлектрический эффект

 

Наряду с пьезоэлектрическим эффектом существует и обратное ему явление: в пьезоэлектрических кристаллах возникновение по­ляризации сопровождается механическими деформациями. Поэтому, если на металли­ческие обкладки, укрепленные на кри­сталле, подать электрическое напряжение, то кристалл под действием поля поляри­зуется и деформируется.

Легко видеть, что необходимость су­ществования обратного пьезоэффекта сле­дует из закона сохранения энергии и факта существования прямого эффекта. Рассмотрим пьезоэлектрическую пластин­ку (рис. 5) и предположим, что мы сжима­ем ее внешними силами F. Если бы пьезо­эффекта не было, то работа внешних сил равнялась бы потенциальной энергии упруго деформированной пластинки. При наличии пьезоэффекта на пластинке появляются заряды и возникает электрическое поле, которое заключает в себе дополнительную энергию. По закону сохранения энергии отсюда следует, что при сжатии пьезоэлектрической пластинки совершается большая работа, а значит, в ней возникают дополнительные силы F1, противодействующие сжатию. Это и есть силы обратного пьезоэффекта. Из приведенных рассуждений вытекает связь между знаками обоих эффектов. Если в обоих случаях знаки зарядов на гранях одинаковы, то знаки деформаций различны. Если при сжатии пла­стинки на гранях появляются заряды, указанные на рис. 5, то при создании такой же поляризации внешним полем пластинка будет растягиваться.

 

 

Рис.5. Связь прямого и обратного пьезоэлектрических эффектов.

 

Обратный пьезоэлектрический эффект имеет внешнее сходство с электрострикцией. Однако оба эти явления различны. Пьезоэффект зависит от направления поля и при изменении направ­ления последнего на противоположное изменяет знак. Электрострикция же не зависит от направления поля. Пьезоэффект наблю­дается только в некоторых кристаллах, не обладающих центром симметрии. Электрострикция имеет место во всех диэлектриках как твердых, так и жидких.

Если пластинка закреплена и деформироваться не может, то при создании электрического поля в ней появится дополнительное механическое напряжение Его величина s пропорциональна напряженности электрического поля внутри кристалла:

s=-bЕ                                            (4)

где b - тот же пьезоэлектрический модуль, что и в случае прямого пьезоэффекта. Минус в этой формуле отражает указанное выше соотношение знаков прямого и обратного пьезоэффектов.

Полное механическое напряжение внутри кристалла складывается из напря­жения, вызванного деформацией, и напряжения, возникшего под влиянием элек­трического поля. Оно равно

s=Cu-bE                                       (5)

Здесь С есть модуль упругости при деформации одностороннего растяжения (мо­дуль Юнга) при постоянном электрическом поле. Формулы (51.2) и (52.2) являют­ся основными соотношениями в теории пьезоэлектричества.

При написании формул мы выбирали u и Е в качестве незави­симых переменных и считали D и s их функциями. Это, конечно, необязательно, и мы могли бы считать независимыми переменными другую пару величин, одна из которых — механическая, а другая — электрическая. Тогда мы получили бы тоже два линейных соотношения между u, s, Е и D, но с другими коэффициентами. В за­висимости от типа рассматриваемых задач удобны различные формы записи основ­ных пьезоэлектрических соотношений.

Так как все пьезоэлектрические кристаллы анизотропны, то постоянные e, С и b зависят от ориентации граней пластинки относительно осей кристалла. Кроме того, они зависят от того, закреплены боковые грани пластинки или свободны (за­висят от граничных условий при деформации). Чтобы дать представление о поряд­ке величины этих постоянных мы приведем их значения для кварца в случае, ког­да пластинка вырезана перпендикулярно оси Х и ее боковые грани свободны:

e=4,5; С=7,8 1010 Н/м2; b=0,18 Кл/м2.

Рассмотрим теперь пример применения основных соотношений (4) и (5) Положим, что кварцевая пластинка, вырезанная, как указано выше, растягивает­ся вдоль оси X, причем обкладки, касающиеся граней, разомкнуты. Так как заряд обкладок до деформации был равен нулю, а кварц является диэлектриком, то и после деформации обкладки будут незаряженными. Согласно определению элек­трического смещения это значит, что D=0. Тогда из соотношения (4) следует, что при деформации внутри пластинки появится электрическое поле c напряженностью  

E=-(b/e0e)u                          (6)

Подставляя это выражение в формулу (5), находим для

механического на­пряжения в пластинке

 

s=Cu-b(-(b/e0e)u)=C(1+(b2/e0eC))u        (7)

Напряжение, как и в отсутствие пьезоэлектрического эффекта, пропорционально деформации. Однако упругие свойства пластинки теперь характеризуются эффек­тивным модулем упругости

С' == С (1 + b2/e0eС).                   (8)

который больше С. Увеличение упругой жесткости вызвано появлением добавоч­ного напряжения при обратном пьезоэффекте, препятствующего деформации. Влияние пьезоэлектрических свойств кристалла на его механические свойства характеризуется величиной

                        К2=b2/e0eC                      (9)

Квадратный корень из этой величины (К) называется константой электромехани­ческой связи Пользуясь приведенными выше значениями e, С и b, находим, что для кварца К2~0.01 Для всех других известных пьезоэлектрических кристаллов К2 оказывает также малым по сравнению с единицей и не превышает 0,1.

Оценим теперь величину пьезоэлектрического поля. Положим, что к граням кварцевой пластинки, перпендикулярным к оси X, приложено механическое на­пряжение 1 1055 Н/м2. Тогда, согласно (7), деформация будет равна u=1,3 10-6. Подставляя это значение в формулу (6), получаем |E|==5900 В/м=59 В/см. При толщине пластинки, скажем, d==0,5 см напряжение между обкладками будет равно U=Еd~30 В. Мы видим, что пьезоэлектрические поля и напряжения могут быть весьма значительными. Применяя вместо кварца более сильные пьезоэлектрики и используя должным образом выбранные типы деформации, можно полу­чать пьезоэлектрические напряжения, измеряемые многими тысячами вольт.

Пьезоэлектрический эффект (прямой и обратный) широко при­меняется для устройства различных электромеханических преоб­разователей. Для этого иногда используют составные пьезоэлементы, предназначенные для осуществления деформаций разного типа.

На рис.6 показан двойной пьезоэлемент (составленный из двух пластинок), работающий на сжатие. Пластинки вырезаны из крис­талла таким образом, что они одновременно либо сжимаются, либо растягиваются. Если, наоборот, сжимать или растягивать такой пьезоэлемент внешними силами, то между его обкладками появ­ляется напряжение. Соединение пластинок в этом пьезоэлементе соответствует параллельному соединению конденсаторов.

 

 

Рис. 6. Двойной пьезоэлемент, работающий на сжатие.

Диэлектрики

 

На рис. 7 показан пьезоэлемент работающий на изгиб. При появ­лении напряжения на обкладках одна из пластинок сжимается в попе­речном направлении и удлиняется в продольном, а другая - растяги­вается и укорачивается, отчего и возникает деформация изги­ба. Если изгибать такой пьезо­элемент внешними силами, то между его обкладками возни­кает электрическое напряже­ние. Соединение пластинок в этом случае соответствует по­следовательному соединению конденсаторов. Очевидно, что такой пьезоэлемент не отвеча­ет на сжатия и растяжения: в этом случае в каждой из пла­стинок возникает электрическое поле, но поля направлены противо­положно, и поэтому напряжение между обкладками равно нулю. Электромеханические преобразователи находят многочисленные применения в разнообразной электроакустической и измерительной аппаратуре. Укажем на пьезоэлектрические микрофон и телефон, пьезоэлектрический адаптер (в электрических проигрывателях пате­фонных пластинок), манометры, измерители, вибраций и др. Осо­бенно важные применения имеют пьезоэлектрические колебания кварца. Если поместить кварцевую пластинку между пластинами конденсатора и создать между пластинами переменное напряжение, то при частоте электрических колебаний, совпадающей с одной из собственных механических частот пластинки, наступает механи­ческий резонанс и в пластинке возникают очень сильные механиче­ские колебания. Такая кварцевая пластинка является мощным излучателем волн сверхзвуковой частоты (кварцевые излучатели), используемых в технике, биологии и медицине, а также в многочис­ленных физических и физико-химических исследованиях. Пьезо­электрические колебания применяются также для стабилизации частоты генераторов электрических колебаний в радиотехнике и в других технических устройствах.

 

 

 

 

Рис.7. Двойной пьезоэлемент, тающий на изгиб.

 

СПИСОК ЛИТЕРАТУРЫ.

 

 

1)  “Электричество” С.Г. Калашников, Москва, 1977г.

2)  “Электротехнические материалы” Ю.В. Корицкий, Москва, 1968г.

3)  “Радиопередающие устройства” Г.А. Зейтленка, Мо­сква, 1969г.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...