Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Что такое системный подход и его научные возможности.

Особенностью современного естествознания является осознанное внедрение идей системности во все его отрасли. Системность реализуется в рамках системного подхода, т.е. исследований, в основе которых лежит изучение объектов как сложных систем.

Под системным подходом в широком смысле понимают метод исследования окружающего мира, при котором интересующие нас предметы и явления рассматриваются как части или элементы определенного целостного образования. Эти части и элементы, взаимодействуя друг с другом, формируют новые свойства целостного образования (системы), отсутствующие у каждого из них в отдельности. Таким образом, мир с точки зрения системного подхода предстает перед нами как совокупность систем разного уровня, находящихся в отношениях иерархии. В современной науке в основе представлений о строении материального мира лежит именно системный подход, согласно которому любой объект материального мира может быть рассмотрен как сложное образование, включающее составные части, организованные в целое.

Для обозначения этой целостности в науке выработано понятие системы. Система занимает центральное место в системном подходе. Поэтому разные авторы, анализируя это понятие, дают определения системы с различной степенью формализации, подчеркивая разные ее стороны. Определим систему как совокупность элементов, находящихся в отношениях и связях друг с другом и образующих некую целостность.

Системам независимо от их природы присущ ряд свойств:

1. Целостность - принципиальная несводимость свойств составляющих ее элементов и невыводимость из последних свойств целого, а также зависимость каждого элемента, свойства и отношения системы от его места внутри целого, функции и т.д. Например, ни одна деталь часов отдельно не может показать время, это способна сделать лишь система взаимодействующих элементов;

2. Структурность - возможность описания системы через установление ее структуры или, проще говоря, сети связей и отношений системы. Структурность также подразумевает обусловленность свойств и поведения системы не столько свойствами и поведением ее отдельных элементов, сколько свойствами ее структуры. Простейший пример: разные свойства алмаза и графита определяются различной структурой при одинаковом химическом составе;

3. Иерархичность систем, т.е. каждый компонент системы в свою очередь может рассматриваться как система, а исследуемая в конкретном случае система представляет собой один из компонентов более широкой системы. Например, живая клетка многоклеточного организма является, с одной стороны, частью более общей системы - многоклеточного организма, а с другой - сама имеет сложное строение и, безусловно, должна быть признана сложной системой;

4. Множественность описания системы, т.е. в силу принципиальной сложности каждой системы ее познание требует построения множества различных моделей, каждая из которых описывает лишь определенный аспект системы. Например, любое животное имеет части тела, которые могут рассматриваться как его элементы; это животное можно рассмотреть как совокупность скелета, нервной, кровеносной, мышечной и других систем; наконец, его можно проанализировать как совокупность химических элементов.

Общество середины XIX в. оказалось не готовым воспринять идеи кибернетики. Лишь в конце XIX в. системная проблематика снова появилась в поле зрения науки. На этот раз внимание было сосредоточено на вопросах структуры и организации систем. В 1890 г. Е.С. Федоров опубликовал свои выводы о том, что может существовать только 230 разных типов кристаллической решетки, хотя любое вещество при определенных условиях может кристаллизоваться. Безусловно, это открытие касалось, прежде всего, минералогии и кристаллографии, но его более общий смысл и значение отметил еще Федоров. Важно было осознать, что все невообразимое разнообразие природных тел реализуется из ограниченного и небольшого количества исходных форм. Развивая системные представления, Федоров выявил и некоторые закономерности развития систем, в частности он установил, что главным средством жизнеспособности и прогресса систем является не их приспособленность, а способность к приспособлению (<жизненная подвижность>), не стройность, а способность к повышению стройности.

Следующий шаг в изучении системности как самостоятельного предмета связан с именем А.А. Богданова, в 1913-1917 гг. опубликовавшего свою книгу <Всеобщая организационная наука (тектология)>, где он высказал идею о том, что все существующие объекты и процессы имеют определенный уровень организованности. В отличие от естественных наук, изучающих специфические особенности организации конкретных явлений, тектология должна изучать общие закономерности организации для всех уровней организованности, рассматривая все явления как непрерывные процессы организации и дезорганизации, исследовать закономерности развития организации, соотношения устойчивого и изменчивого, значение обратных связей и собственных целей организации (которые могут, как содействовать целям высшего уровня организации, так и противоречить им), роль открытых систем. Богданов отмечал, что уровень организации системы тем выше, чем сильнее свойства целого отличаются от простой суммы свойств его частей, и подчеркивал роль моделирования и математики как потенциальных методов решения задач тектологии. Он довел построения тектологии до рассмотрения проблемы кризисов, т.е. таких моментов в истории системы, когда неизбежна скачкообразная перестройка ее структуры.

Одной из достаточно серьёзных попыток приблизиться к решению данной проблемы можно считать разработку общей теории систем (ОТС). Основателем этой теории принято считать австрийского биолога - теоретика Людвига фон Берталанфи (1901 – 1972).

Первые публикации Л. Берталанфи с системными идеями в зачаточной форме появились в 1927 г. В более проработанном виде они были опубликованы в печати в конце 40-х гг. ХХ в. На русском языке основные положения ОТС Берталанфи начали печататься с 1969 г.

Даже в современном широком понимании понятие «система» трактуется разными учёными по-разному. Наиболее широко определяет систему У.Р. Эшби. Он считает, что система – это любая совокупность явлений, какая Вам только заблагорассудится (например, температура воздуха в данной комнате, его влажность и курс доллара в Сингапуре), лишь бы был задан принцип, позволяющий рассматривать эту совокупность как систему. Далее Эшби уточняет, что анализ на основе здравого смысла приведёт к разумному ограничению всего такого множества систем, которое в результате будет представлено только реальными системами.

Берталанфи определяет систему более конкретно, как любое множество элементов любой материальной природы, которые находятся в определённом отношении друг к другу.

Приведём ещё одно определение системы, которое даёт специалист в области кибернетики С. Бир: система – это всё, что состоит из связанных между собою частей. Но в окружающем мире всё, так или иначе, связано друг с другом. Тогда, чтобы определение Бира не потеряло смысла, его следует дополнить тем, что связи внутри системы должны быть сильнее связей системы с окружающей средой.

Современное естествознание также не может обойтись без понятия система в его наиболее общем смысле.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...