Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Процесс накопления молекул инфекционного прионного белка

ПОНЯТИЯ И ТЕРМИНЫ

 

Понятия и термины. Постепенное накопление фактов, все более полно характеризующих особенности прионных болезней и их возбудителей, естественно, порождали появление новых терминов и понятий, которые, конечно же, будут использованы при дальнейшем изложении материалов в этой книге и поэтому нуждаются в специальном объяснении.

Прион малая белковая инфекционная частица, устойчивая к инактивирующим воздействиям, которые модифицируют нуклеиновые кислоты. Прионы по большей части или исклю­чительно состоят из молекул инфекционного прионного белка и вызывают ТГЭ у человека и животных.

PrP прионный белок.

PrPSc _ инфекционный прионный белок, который вызывает скрепи (scrapie) у овец и коз и другие прионные болезни жи­вотных и человека. Однако, учитывая, что скрепи является наи­более распространенной в природе прионной болезнью, для обозначения инфекционности прионного белка использованы первые буквы названия заболевания – "Sc" (scrapie).

PrPC неинфекционный прионный белок, который носит наименование "клеточный" и в этом случае "С" – начальная бу­ква английского слова cell (клетка). Неинфекционный (клеточ­ный) прионный белок является жизненно необходимым белком, обнаруживаемым в организме всех млекопитающих, включая и человека. Одной из отличительных черт клеточного прионного белка является его высокая чувствительность к переваривающе­му действию протеазы К, под действием которой PrPC полно­стью разрушается.

PrP 27 -30 – инфекционный прионный белок, сохраняющий­ся в результате переваривающего воздействия протеазы К на ис­ходный инфекционный прионный белок PrPSc. Его молекулярная масса в результате гидролитического воздействия протеазы К сни­жается лишь незначительно и сохраняется на уровне 27–30 кДа.

PRNP– ген, кодирующий синтез клеточного прионного белка (PrPC в организме человека, локализованный на хромосоме 20.

Prnp ген, кодирующий синтез клеточного прионного бел­ка (PrPC в организме мыши, локализованный на хромосоме 2.

Прионные палочки белковые структуры, выявляемые в моз­говой ткани зараженных животных или человека и представляю­щие собой главным образом или исключительно агрегированные молекулы инфекционного прионного белка (PrP 27–30), сформированные в результате экстракции детергентами и ограни­ченного протеолиза исходного инфекционного прионного белка (PrPSc). Морфологически и гистохимически прионные палочки неотличимы от многих амилоидных структур.

PrP-амилоидные бляшки амилоидные бляшки, состоящие из прионного белка, обнаруживаемые в мозговой ткани живот­ных или людей, погибших от прионных болезней.

Конформационные белки белки, у которых в результате из­менений третичной или даже четвертичной структуры меняются некоторые свойства.

 

СОВРЕМЕННАЯ КЛАССИФИКАЦИЯ

ПРИОННЫХ БОЛЕЗНЕЙ

 

Как и любая другая, классификация прионных болезней представляет собой попытку искусственного группирования объектов с целью сис­тематизации фактического материала для простоты его воспри­ятия, обоснованности обобщений и эффективности дальней­ших исследований хотя бы в ближайшей перспективе. Отсюда понятно, что большие успехи, достигнутые за последние 10 – 15 лет в области изучения прионов и вызываемых ими заболеваний, обосновали естественную потребность в систематизации нако­пленных данных.

Таблица 1. Современная классификация прионных болезней человека и животных

Нозологическая форма Естественный хозяин
Болезнь Крейтцфельдта – Якоба Человек
Куру - // -
Синдром Герстманна – Штреусслера – Шейнкера - // -
Фатальная семейная инсомния (смертельная семейная бессонница) - // -
Скрепи Овцы и козы
Трансмиссивная энцефалопатия норок Норки
Хроническая изнуряющая болезнь Олени и лоси
Губкообразная энцефалопатия крупного рогатого скота Коровы и быки
Губкообразная (спонгиоформная) энцефало­патия кошек Кошки  
Губкообразная энцефалопатия экзотических копытных   Антилопы и большой куду

 

Список прионных болезней человека возглавляет болезнь Крейтцфельдта–Якоба, которая хронологически хотя и была включена в число инфекционных ТГЭ позднее куру, тем не ме­нее является как бы основным заболеванием, в то время как куру и синдром Герстманна–Штреусслера–Шейнкера рассматрива­ются как особые ее формы.

Среди прионных болезней животных основным заболеванием является скрепи в связи с тем, что именно эта болезнь рассматри­вается как прототип всех прионных болезней человека и животных. Указанное выше удвоение числа прионных болезней животных связано с разразившейся с 1986 г. в Великобритании эпизоотией губкообразной энцефалопатии крупного рогатого скота (ГЭКРС).

Детальные исследования условий передачи прионных болез­ней у людей позволили в самое последнее время предложить еще один вариант классификации именно этой немногочис­ленной группы заболеваний, основанный на характере и особен­ностях их возникновения. Установлено, что в отличие от всех известных инфекционных заболеваний прионные болезни че­ловека могут возникать как:

1) инфекционные,

2) спорадические,

3) наследственные.

 

МЕСТО ПРИОННЫХ БОЛЕЗНЕЙ В ИНФЕКЦИОННОЙ ПАТОЛОГИИ

 

Место прионных болезней в инфекционной патологии чело­века и животных определяется особенностями, присущими этим заболеваниям.

Первая из них связана с необычностью возбудителей, свой­ства которых резко отличают их от всех известных инфекцион­ных агентов. Именно это обстоятельство выделяет прионные болезни в особую категорию болезней, абсолютно "безразлич­ных" к средствам как лекарственной терапии, так и к разнооб­разным средствам и методам иммунотерапии. Эти особенности заставляют переносить основное внимание в борьбе с прионными болезнями на меры предупредительные, нежели лечебные. Хотя справедливости ради заметим, что даже абсолютная фаталь­ность прионных болезней не может и не должна служить осно­ванием для прекращения поисков эффективных лекарственных средств. Именно поэтому в 1998 г. в Москве на V Российском конгрессе "Человек и лекарство" был организован и с успехом проведен специальный симпозиум, целиком посвященный прионным болезням человека и животных.

Что же касается средств иммунотерапии и, естественно, им­мунопрофилактики, то здесь пока не существует реальных осно­ваний, которые позволяли бы рассчитывать на успех по крайней мере в обозримом будущем, в связи с тем что инфекционный прионный белок PrPSc иммунологически не отличим от нор­мального прионного белка PrPC.

Вторая особенность прионных болезней обусловлена тем, что они представляют собой неотъемлемую часть теперь уже достаточно обширной (около 40 нозологических форм) группы медленных инфекций человека и животных. Как известно, по­давляющее большинство этих заболеваний вызывают вирусы, известные как возбудители острых инфекций. Это лишний раз подчеркивает справедливость утверждения о том, что большин­ство вирусов в зависимости от условий заражения (или пребы­вания) способствует развитию в организме различных форм ин­фекционного процесса.

В связи с этим прионные болезни занимают особое положе­ние, так как их возбудители не способны к столь выраженной универсальности, как у вирусов, и они (инфекционные прион­ные белки - PrPSc) не формируют и не поддерживают в организ­ме иные процессы, кроме медленного и (как это было установ­лено уже давно и впоследствии неоднократно подтверждалось экспериментально) бессимптомного.

Отмеченная особенность, т.е. неспособность вызывать острую форму инфекционного процесса, по-видимому, обусловлена осо­бенностями самих возбудителей прионных болезней, так как уже давно обнаружено, что сам процесс накопления инфекционного прионного белка PrPSc в различных органах и тканях эксперимен­тально зараженного лабораторного животного протекает весьма медленно. Можно полагать, что низкая скорость накопления ин­фекционного агента в данном случае обусловлена событиями, ле­жащими в основе механизма превращения клеточного прионного белка (PrPC) в инфекционный прионный белок (PrPSc).

Собственно механизм накопления инфекционного белка в зараженном организме сегодня точно неизвестен. Вместе с тем, исходя из определения, что это посттрансляционный процесс, очевидно, что инфекционный прионный белок вызывает в здо­ровом организме трансформацию нормального прионного бел­ка в инфекционную форму за счет его (нормального белка) конформационных (т.е. пространственных) изменений. В этом случае речь идет об изменении третичной или даже четвертичной структуры исходного белка PrPC. Таким образом, процесс на­копления инфекционного прионного белка происходит не в ре­зультате синтеза в зараженном организме молекул PrPSc de novo, а вследствие конформационных изменений уже синтезирован­ных перед этим нормальных молекул PrPC под влиянием инфек­ционного прионного белка PrPSc (схема). Процесс накопления инфекционного прионного белка обусловлен прежде всего необ­ходимостью контакта двух молекул. В результате под влиянием одной молекулы PrPSc происходит трансформация одной моле­кулы PrPC в ее инфекционную форму PrPSc. Следующий этап, как видно на схеме, включает в себя уже наличие влияния двух молекул PrPSc, под воздействием которых образуются уже че­тыре молекулы PrPSc и т.д. Таким образом, как видно из приведенной схемы, процесс накопления инфекционного прион­ного белка носит лавинообразный характер.

 

Процесс накопления молекул инфекционного прионного белка

 

 

СТРУКТУРА ПРИОННЫХ БЕЛКОВ

 

Установленные необычные свойства возбудителей ТГЭ по­служили основанием для выдвижения большого количества разнообразных теорий, пытающихся объяснить структуру и хи­мическую природу этих агентов, многие из которых теперь име­ют лишь историческое значение. Резкий скачок вперед в по­нимании природы возбудителей ТГЭ был сделан в результате разработок эффективных методов очистки и концентрации агента скрепи. Существенный вклад в разработку таких методов внесла группа Стенли Прузинера из Калифорнийского универси­тета (США). Разработанная им многоступенчатая система очист­ки позволила получить препараты, очищенные в 100 – 1000 раз. На основании изучения высокоочищенных препаратов авторы пришли к выводу о том, что возбудитель скрепи является белком. Этот вывод был сде­лан в результате анализа инактивации агента при его обработке протеазой К, модификации при воздействии диэтилпирокарбонатом, додецилсульфатом натрия, гуанидинтиоцианатом, фенолом и мочевиной. Агент оставался устойчивым к обработке рядом реа­гентов, инактивирующих нуклеиновые кислоты, что указывало на их отсутствие в его составе. Изучение очищенного препарата возбудителя скрепи показало, что он обладает молекулярной массой около или меньше 50 000 Да.

Следует отметить, что представление о прионной природе возбудителя скрепи, выдвинутое С.Прузинером, оказалось очень плодотворным и послужило основанием для более детального распознавания природы возбудителей ТГЭ. В результате даль­нейшей очистки приона было показано, что его основным ком­понентом является мажорный белок с молекулярной массой 27000 – 30000 Да, обозначаемый как РrР 27–30. Этот белок является составной частью скрепи-ассоциированных фибрилл, при­чем получены структурные и биохимические свидетельства того, что сборка этих фибрилл происходит in vivo, и изучены некоторые молекулярные механизмы их образования. По своей физико-химической характеристике РrР представляет собой сиалогликопротеин и является первым идентифицированным структурным компонентом приона скрепи. Появление РrР 27–30 на этапе развития инфекции до раз­вития гистопатологических изменений указывало на то, что этот белок не является вторичным продуктом патологической реакции. Был сделан вывод о том, что РrР 27–30 играет центральную роль в патогенезе скрепи.

При дальнейшем изучении прионов, выделенных из голов­ного мозга зараженных скрепи животных, было выявлено на­личие в ЦНС частиц в виде стержней диаметром 10 – 20 нм и длиной 100 – 200 нм. Ультраструктурно они напоминали ами­лоид и, по-видимому, представляли собой полимерную форму приона скрепи; каждый стержень содержал около 1000 молекул приона. Был проанализирован аминокислотный состав PrP 27–30 и определена последовательность 15 аминокислотных остатков в его полипептидной цепи. В последующем из головного мозга зараженных скрепи хомяков был выделен мажорный белок с мо­лекулярной массой 33–37 кДа, обозначенный как HaSp 33–37; его выделение проводилось без этапа обработки протеазами. Обработка HaSp 33–37 протеазой К приводила к получению продукта, электрофоретически неотличимого от РrР 27–30. Бы­ла определена последовательность 22 аминокислотных остатков HaSp 33–37. Авторы полагали, что HaSp 33–37 представляет со­бой интактную форму белка возбудителя скрепи. Были изучены также некоторые другие характеристики при­онов скрепи и болезни Крейтцфельдта–Якоба. В частности, при изучении липосом было подтверждено предположение о том, что инфекционная частица скрепи содержит 2 молекулы PrPSc и по­казано наличие вставок в ген приона при семейных случаях болез­ни Крейтцфельдта–Якоба и синдрома Герстманна–Штреусслера–Шейнкера.

Важным шагом, имеющим как теоретическое, так и методи­ческое значение, было получение антител при использовании в качестве антигенов высокоочищенных прионов скрепи. В сы­воротках кроликов, иммунизированных РrР 27–30, определяли антитела, специфически реагирующие с РrР 27–30 и с несколь­кими белками с более низкой молекулярной массой, очевидно, имеющими общую антигенную детерминанту с РrР 27–30 или являющимися продуктами его расщепления. Полученные анти­сыворотки не взаимодействовали с соответствующими белками, выделенными из головного мозга нормальных незараженных животных. Используя полученную антисыворотку с пероксидазной меткой, удалось показать локализацию прионов в определен­ных отделах головного мозга зараженных животных. В соответ­ствии с ранее полученными данными структуры, связанные с меченой антисывороткой, обладали характеристикой амилоид­ных бляшек. Получение и использо­вание антисыворотки к синтетическому пептиду, соответствую­щему N-концевой части приона скрепи, позволили провести индикацию белка скрепи-ассоциированных фибрилл в головном мозге, селезенке и лимфатических узлах зараженных животных. При этом положительные результаты были получены на ранних этапах инкубационного периода скрепи.

Развитие представлений о прионной природе возбудителя скрепи позволило сделать еще один решающий шаг в познании природы этих необычных агентов. В 1985 г. группе исследова­телей удалось выделить и охарактеризовать ген, кодирующий PrP 27–30. Оказалось, что этот ген содержится в ДНК, выде­ленной из мозга как скрепи-инфицированных, так и нормаль­ных животных; соответственно м РНК для PrPC была обнаружена в головном мозге и в других тканях как инфицированных скрепи, так и нормальных животных. Используя соответствующую анти­сыворотку, удалось показать, что в тканях незараженных живот­ных содержится белок, антигенно родственный PrP 27–30, но от­личающийся от него чувствительностью к обработке протеазой К. Были получены доказательства того, что PrPC не кодируется гипотетической нуклеиновой кислотой агента. Эта точка зрения поддерживается в работах R.M.Ridley, H.F.Barker (1997). На основе этих данных были изучены биоге­нез и трансмембранная ориентация клеточной изоформы белка приона скрепи.

 

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ПРИОНОВ

 

Физико-химические свойства прионных белков особенно интенсивно изучались в последние годы, в результате чего были сформированы представления и получены новые данные о пер­вичной, вторичной и третичной структуре PrP. Так, при анали­зе первичной структуры PrPC различных видов животных было выявлено, что 80% последовательностей PrPC у разных видов жи­вотных были идентичными. Исключение составлял куриный PrPC, где идентичность последовательностей по отношению к другим видам составляла всего 30%. Тем не менее 24 аминокислотные по­следовательности, располагающиеся между 112-м и 135-м аминокислотными остатками, являются высококонсервативными для всех видов млекопитающих, а также кур. В частности, было по­казано, что конверсия нормального прионного белка PrPC в его инфекционную форму (PrPSc) является посттрансляционным процессом. Анализ вторичной структуры PrPSc выявил, что этот переход характеризуется большими структурными изменениями самого приона. Продемонстрировано, что PrPC содержит 42% a-спиралей и почти не содержит b-тяжей (около 3%), в то время как в его инфекционной форме PrPSc выявляется 30% a-спиралей и 43% b-тяжей. В эксперименталь­ных исследованиях было подтверждено, что обработка нормаль­ного PrPC реагентами, уменьшающими образование b-тяжей, также приводит к уменьшению инфекционности приона; одно­временно снижается и устойчивость к действию протеазы К, чувствительность к которой является маркером, отличающим PrPC от PrPSc.

Проведенный сравнительный анализ показал, что конформационные различия между нормальным и инфекционным прионным белком заключаются в трехмерной конформации. Переход нормального PrPC в его патологическую форму имеет в своей основе перестройку укладки белка. Корреляция изменений во вторичной структуре PrP с изменениями его инфекционности вместе с изменением конформации PrP дает основания заклю­чить, что конформация прионного белка может иметь главное значение для проявления его патогенных свойств.

Были изучены некоторые закономерности перехода клеточной формы приона PrPC в его инфекционную форму и выявлено, что эффективность этой конверсии определяется видовой гомологией PrPC и PrPSc и, следовательно, в условиях гетерологичности обеих форм прионного белка эффективность конверсии снижается. Этим и объясняется механизм низкой инфекционности прионов в гетерологичной системе (например, животные – человек). Значение этой конверсии в развитии ин­фекционного процесса было подчеркнуто в экспериментальных исследованиях, показавших, что мыши, не экспрессирующие PrPC, устойчивы к инфекции прионами.

В исследованиях in vitro, проведенных на модели агентов ТГЭ, также была установлена корреляция между эффективностью конверсии PrPC в PrPSc и способностью к трансмиссии агентов скрепи, губкообразной энцефалопатии коров и болезни Крейтцфельдта – Якоба. Было продемонстрировано, что конверсия PrPC в PrPSc в гетерологичной системе значительно снижена по сравнению с гомологичной системой. Авторы делают из своей сугубо экспериментальной работы практически важный вывод о том, что способность агентов скрепи и губкообразной энцефалопатии коров поражать людей после соответствующей экспози­ции является ограниченной и низкой.

Таким образом, в результате разносторонних исследований, особенно интенсивно проводившихся в 90-е годы, были получе­ны и систематизированы имеющие принципиальное значение данные о структуре и физико-химических свойствах прионных белков. Получение и анализ этих сведений создали необходи­мые предпосылки для дальнейшего углубленного изучения био­логических особенностей прионных белков и механизма разви­тия вызываемых ими заболеваний людей и животных.

 

БИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ПРИОНОВ

 

В последние годы вопрос о биологическом значении PrPC был подвергнут ревизии. На мышах, гомозиготных по потере гена PrPC, было показано, что эти животные после рождения росли нормальными, но спустя 70 нед у них развивались про­грессирующие симптомы атаксии, нарушалась моторная коор­динация и отмечалась экстенсивная потеря клеток Пуркинье. Авторы сделали вывод о том, что PrPC играет важную роль в вы­живании клеток Пуркинье. Помимо этого, указывается на роль PrPC в регуляции циркадианных ритмов, на возможное участие PrPC в активации лимфоцитов и на его роль в качестве трофического фактора для некоторых по­пуляций нейронов. Сохранность PrPC имеет значение для реа­лизации нормальной функции синапсов. В последние годы опуб­ликованы данные, свидетельствующие о роли PrPC в регуляции сна и продемонстрировано значение нарушения нормальной функции PrPC в возникновении смертельной семейной бес­сонницы. В исследованиях in vitro было также показано, что PrPC вовлекается в процессы регуляции содержания внутриклеточного Са2+ в нейронах,  Интенсивные исследования биологической роли PrPC позволили прийти к заключению о значении нор­мального приона PrPC в сохранении резистентности нейронов и астроцитов к окислительному стрессу.

Таким образом, за последние годы были значительно расши­рены представления о биологической значимости PrPC. Было ус­тановлено, что PrPC синтезируется в эндоплазматической сети и довольно быстро деградирует: продолжительность его полурас­пада составляет всего 5 – 6 ч. Синтезированный PrPC, проходя че­рез аппарат Гольджи, транспортируется на поверхность клетки, где он связывается с гликофосфатидилинозитолом. Синтезированный PrPC в дальнейшем переносится вдоль аксона при помо­щи быстрого антероградного транспорта. В отличие от PrPC ин­фекционный прионный белок PrPC первично аккумулируется в клетках, накапливаясь в цитоплазменных везикулах. Дальней­шее накопление PrPSc в синаптических структурах и связанная с этим дезорганизация синапсов, возможно, являются причи­ной развития глубоких неврологических дефектов и деменции.

Напомним, что заболевания, вызываемые прионами, харак­теризуются рядом признаков, сочетание которых определяется биологическими особенностями их возбудителей, это прежде всего длительный инкубационный период (от месяцев до десят­ков лет), отсутствие воспалительных изменений, хронически прогрессирующая патология, отсутствие ремиссий и выздоров­ления. Для прионных болезней характерен ряд отрицательных признаков, которые не наблюдаются при заболеваниях, вызывае­мых вирусами. К ним относятся отсутствие продукции интерферона и нечувствительность к интерферону, отсутствие в составе возбудителя инфекционных нуклеиновых кислот и неспособ­ность прионов интерферировать с вирусами. Для прионных бо­лезней характерны нечувствительность к иммуносупрессирующему или иммунопотенцирующему действию АКТГ, кортизона, циклофосфамида, g-лучей, антилимфоцитарной сыворотки, тимэктомии и спленэктомии, отсутствие влияния адъювантов. Для прионных болезней характерна также интактность В- и Т-клеток. Комбинация всех перечисленных признаков, каждый из которых не является чем-то уникальным, и определяет своеобразие прионных болезней.

Получение новых данных в отношении биологических осо­бенностей прионов позволило заключить, что прионные болезни являются нейродегенеративными заболеваниями, в возникно­вении которых фундаментальную роль играют конформационные изменения, а сам механизм развития болезни является беспрецедентным.

Результаты проведенных исследований позволили с новых позиций подойти к вопросу о природе агентов ТГЭ, а вся сумма полученных новых знаний о прионах послужила основанием для оптимистического высказывания С.Прузинера о том, что "эра черного ящика биологии скрепи и болезни Крейтцфельдта – Якоба, возможно, подходит к концу". В 1997 г. за свои много­летние исследования медленных инфекций, вызываемых при­онами, американский биохимик С.Прузинер был удостоен Но­белевской премии по биологии и медицине. Таким образом, мы встречаемся с не очень частым случаем, когда Нобелевская пре­мия присуждается дважды на протяжении 20 лет за исследова­ние одной и той же проблемы, что, безусловно, свидетельствует о значимости самой проблемы и о темпах ее изучения.

 

ПРИОННЫЙ ГЕН

 

Современный этап в исследовании молекулярных основ прионных заболеваний человека и животных связан с идентифи­кацией гена, кодирующего прионный белок. Расшифровка ами­нокислотной последовательности этого белка, позволила выяс­нить структуру кодирующей области соответствующего гена. Этот ген, получивший название PRNP, был вскоре выделен и иссле­дован в лаборатории Ч.Вэйссманна. Выделение гена PRNP позволило использовать для исследования этиологии и патогенеза прионных заболеваний весь арсенал современных методов молекулярно-генетического анализа. В настоящее время структура белка PrP и соответст­вующего гена известна для многих организмов. Ген PRNP ока­зался эволюционно-консервативным: он найден у многих мле­копитающих и птиц. В структурном отношении гены PRNP млекопитающих тоже схожи: в генах всех млекопитающих об­ласть, кодирующая PrP, локализована только в одном экзоне (экзоны - области гена, представленные в структуре зрелой иРНК). У человека этот ген локализован на хромосоме 20, у мышей - на хромосоме 2. Ген PRNP присутствует и экспрессируется не только у больных, но и у здоровых животных. При этом, несмотря на то, что иРНК гена PRNP в тканях мозга взрослых животных экспрессируется конститутивно, у молодых животных ее коли­чество меняется с возрастом. Наибольшее количество иРНК PRNP зарегистрировано в нейронах.

Примерно 10% всех прионных заболеваний человека отно­сятся к так называемым семейным формам или болезням с на­следственной предрасположенностью. Идентификация прионного гена позволила связать семейные формы этих заболеваний с конкретными мутациями в гене PRNP. Так, например, мутация, вызывающая замену пролина на лей­цин в 102-м положении PrP оказалась связана с развитием син­дрома Герстманна-Штреусслера-Шейнкера. Интересно, что эта мутация приводит к заболеванию не только людей, но и мышей. Мутация в 178-м кодоне может быть связана как с развитием болезни Крейтцфельдта-Якоба (БКЯ), так и смертельной се­мейной бессонницы. Интересно, что оба случая связаны с за­меной аспарагиновой кислоты на аспарагин. Разница, по всей видимости, заключается в том, что мутантная аллель при смер­тельной семейной бессоннице в 129-м положении несет кодон для метионина, в то время как в случае БКЯ это положение занимает кодон для валина. Наследственная предрасположен­ность к прионным заболеваниям может быть связана не только с определенными аминокислотными заменами в PrP, но и с его гораздо более существенными изменениями. Так, в аминоконцевом районе PrP имеется 5 расположенных подряд идентич­ных последовательностей из 8 аминокислот. Некоторые формы семейной БКЯ оказались связанными с увеличением количест­ва таких повторов. Механизм образования этих повторов не­ясен. Однако понятно, что в отличие от случаев, описанных ра­нее, они возникли не за счет точковых мутаций, а в результате рекомбинационных событий. Всего в настоящее время в гене PRNP человека известно около 20 мутаций, связанных с семей­ными формами прионных заболеваний.

У животных аллельный полиморфизм по гену PRNP тоже связан с вероятностью развития прионных болезней. Тем не ме­нее вопрос о том, влияют ли изменения в структуре этого гена на вероятность спонтанного заболевания животных или они связаны с подверженностью животных прионным инфекциям, остается открытым.

Важной особенностью прионов как инфекционных агентов является наличие межвидовых барьеров на пути их передачи, хотя PrP лишь незначительно отличается по первичной струк­туре у разных видов млекопитающих. В большинстве случаев эти барьеры не абсолютны, иными словами, они не препятствуют, а лишь значительно затрудняют передачу инфекции от особей одного вида особям другого вида. Вместе с тем известно по крайней мере одно исключение из этого правила: у кроликов не удается вызвать заболевание после заражения их инфекцион­ным прионным белком, выделенным из мозга самых разных животных. Хотя причина устойчивости кро­ликов к прионной инфекции точно неизвестна, анализ структу­ры гена, кодирующего PrP кролика, показал, что она может быть связана с некоторыми особенностями первичной структуры этого белка.

Существенный прогресс в исследовании прионов стал воз­можным после передачи скрепи мышам и хомякам. Как уже было упомянуто, делеция гена PRNP не приво­дит к немедленной смерти животных. Это позволило устано­вить, что особи, лишенные гена PRNP, не заражаются прионами и, вероятно, вообще не подвержены этим заболеваниям. Интересно, что в подобных экспериментах было показа­но, что удаление аминоконцевой последовательности PrP мы­ши за счет делеции соответствующей области гена PRNP не препятствует развитию прионных заболеваний. Ранее было отмечено, что некоторые семейные формы БКЯ связаны с увеличением количества аминокислотных по­второв в этой области белка PrP человека. Таким образом, эти изменения влияют на вероятность заболевания, хотя его нали­чие не является критичным для прионного превращения белка.

Увеличение экспрессии гена PRNP (количество PrP) способ­ствует возникновению заболевания. В силу существования межвидовых барьеров мыши устойчивы к заражению прионами, выделенными из мозга больных хомя­ков, но трансгенных мышей, несущих ген PRNP хомяка, легко заразить с помощью инокуляции суспензии клеток мозга боль­ного хомяка. Все перечисленные факты полностью согласуются с теорией о белковой природе прионов. Животные, лишенные гена PRNP, не заболевают просто пото­му, что их клетки не содержат белка, подверженного конформационной перестройке. При увеличении количества молекул этого белка должна возрастать вероятность спонтанного пере­хода какой-либо из молекул в патогенную форму. Существова­ние наследственной предрасположенности к прионным заболе­ваниям связано с тем, что мутации увеличивают вероятность прионного превращения белка PrP. Менее выраженная способ­ность к инфицированию у "чужого" приона при межвидовом за­ражении может объясняться пониженной способностью PrPSc передавать свое патогенное состояние PrPC несколько отли­чающемуся от него по первичной структуре.

Итак, возможность заражения особей одного вида с помо­щью прионов, выделенных из тканей мозга особей другого ви­да, способствовала использованию лабораторных животных (мышей и хомяков) для изучения природы прионов и вызываемых ими болезней. В то же время отсутствие межвидовых барьеров на пути распространения прионов означает принципиальную воз­можность их передачи от животных человеку. Действительно, в последнее время проблема прионов приобрела существенное практическое значение в связи со вспышками соответствующих эпизоотии среди сельскохозяйственных животных в некоторых европейских странах, а также с появлением наблюдений о воз­можности передачи этих заболеваний от животных человеку. В настоящее время получен ряд серьезных свидетельств, указывающих на опас­ность заражения человека прионами животных. При этом наиболее убедительные доказатель­ства базируются на результатах, полученных с использованием трансгенных лабораторных животных.

 

ПАТОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

ПРИ ПРИОННЫХ БОЛЕЗНЯХ ЧЕЛОВЕКА

 

В настоящее время известно 4 прионных заболевания: бо­лезнь Крейтцфельдта- Якоба (БКЯ), куру, синдром Герстманна-Штреусслера-Шейнкера (СГШШ) и фатальная семейная инсомния (ФСИ). Основную массу прионных болезней состав­ляет БКЯ, чаще всего в виде спорадических случаев, в 10% слу­чаев БКЯ носит семейный характер. Наблюдается также ятрогенная форма БКЯ, которая, как и куру, манифестирует как инфекция в результате случайного заражения прионными бо­лезнями. СГШШ и ФСИ являются доминантно наследуемыми прионными болезнями, которые, как было показано, вызыва­ются мутациями прионного гена.

В нашей стране опубликованы лишь единичные работы с описанием морфологических изменений ЦНС при спорадиче­ских случаях БКЯ. Нами опубликованы данные о прижизнен­ной морфологической диагностике двух спорадических случаев БКЯ на основе исследования биоптатов коры большого мозга с использованием световой и электронной микроскопии, в ко­торых диагноз в дальнейшем был подтвержден на аутопсии. Отсутствуют работы, посвященные морфологическим изменениям мозга при других формах при­онных заболеваний. В то же время за рубежом в последние годы значительно возросло число публикаций, в том числе и обоб­щающих, в которых на основании уже довольно большого числа наблюдений подробно описаны особенности изменений ЦНС при всех на сегодняшний день известных формах прионных за­болеваний, включая куру, БКЯ (спорадическую, наследствен­ную, ятрогенную формы и новый вариант), СГШШ и ФСИ. Помимо морфологических исследований с использованием классических нейрогистологических методик, эти работы включают в себя и данные иммуноцитохимического исследования, направленные на выявление отложений патоло­гической изоформы прионного белка (PrPSc) в гистологических срезах из различных областей мозга. Без преувеличения можно сказать, что именно эти методы, направленные на идентифи­кацию отложений PrPSc в ткани мозга, "революционизировали" прижизненную или посмертную диагностику прионных забо­леваний, позволяя поставить уверенно достоверный диагноз в ранних стадиях заболевания, в том числе и до развития в мозге характерных морфологических изменений. В последние годы под эгидой ВОЗ разработаны критерии морфологической диаг­ностики этих заболеваний. Учитывая особую эпидемиологиче­скую значимость и связь заболевания со спонгиоформной энцефалопатией крупного рогатого скота, основной акцент сделан на разработку критериев морфологической диагностики нового варианта БКЯ.

При морфологическом исследовании мозга больных, погиб­ших от различных прионных болезней, выявлены черты их сход­ства и различия. Макроскопически выявляется снижение объема и массы головного мозга и уменьшение толщины (атрофия) его коры. Степень выраженности этих изменений тесно связана с продолжительностью жизни больных, однако может и не выяв­ляться каких-либо макроскопических изменений мозга. Хотя атрофия коры мозга является характерной находкой во многих случаях БКЯ, выраженность ее широко варьирует в пределах различных областей коры, в разных случаях. Характер корковой атрофии может быть связан с клиническими проявлениями заболевания. Так, в случаях корковой слепоты вы­является выраженная атрофия коры затылочных долей мозга.

Изредка масса мозга при БКЯ значительно уменьшена (ме­нее чем 1000 г), атрофия коры в таких случаях обычно сопро­вождается атрофией базальных ядер, таламуса и гипоталамуса. Избирательная атрофия таламуса харак­терна для ФСИ и может быть выявлена при макроскопическом исследовании мозга. Эти макроскопиче­ские изменения неспецифичны и могут наблюдаться при широ­ком круге других нейродегенеративных заболеваний, включая болезнь Альцгеймера, Пика, хорею Гентингтона и мультисистемную атрофию. Атрофия мозжечка может быть макроскопи­чески ярко выражена при некоторых прионных заболеваниях человека, особенно при куру и СГШШ, a также при ятрогенной БКЯ, развившейся у больных, кото

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...