Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Факторы миграций химических элементов




При рассмотрении миграции элементов необходимо выявлять причины, обусловившие данный процесс, так как их различные сочетания способны привести к усиленной миграции одних элементов и концентрации других в пределах даже относительно небольших участков. Причины миграции, с известной степенью условности, возможно разделить на внутренние, связанные со свойствами атомов и их соединений, и внешние, определяющие обстановку миграции.

Внутренние факторы миграций

1. Электростатические (кристаллизационные) свойства ионов. Данную группу факторов следует принимать во внимание только при миграции элементов в виде свободных ионов. Такая миграция характерна для водных растворов, газовых смесей, живого вещества и др. При рассмотрении электростатических свойств ионов традиционно применяется приближённо-количественный показатель ― ионный потенциал (отношение валентности иона к радиусу: Z/10ri, где Z ― валентность, ri ― радиус иона, нм). По величине данного показателя обычно выделяются 3 группы элементов (меньше 3; 3―12; больше 12) (рис.1).

Элементы первой группы (малозарядные и крупные ионы Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Fe2+, Mn2+, Cu, Zn, La, Pb и др.) легко переходят в ионные растворы природных вод, способны перемещаться на далёкие расстояния и не образуют комплексные ионы. Элементы второй группы (Be, Al, Si, Sc, Ti, V, Cr, Mn4+, Fe3+, Co, Ni, Ga, Y, Zr, Nb, Mo4+, Mo6+, Sn, Hf, Lu, Th), именуемые гидролизатами, образуют труднорастворимые гидролизованные и сложные комплексные соединения. Поведение членов данной группы дифференцированно в зависимости от pH среды. В частности, Mn выпадает в осадок в щелочной среде (pH 8―10), Al и Fe2+ ― в кислой (pH 3―5,5). Элементы третьей группы (малый ионный радиус и высокая валентность ― C, N, P, S, As, Se, Te), соединяясь с O2―, образуют растворимые комплексные ионы.

Последовательность кристаллизации минералов из растворов, как правило, в первом приближении контролируется энергией их кристаллических решёток. Последняя зависит от энергетических коэффициентов ионов (ЭК), возрастающих с увеличением валентности и уменьшением ионного радиуса:

 

ЭКкат = (Z2/20ri) × 0,75(10ri + 0,20); ЭКан = Z2/20ri,

 

где Z ― валентность, ri ― радиус иона, нм.

Ионы с большими значениями ЭК раньше выпадают из растворов; в процессах выветривания они, как менее подвижные, накапливаются в элювии. Дальность свободной миграции с увеличением радиуса иона возрастает [1], тогда как при диффузии ― уменьшается.

 

 

Рис.1. Группировка элементов в соответствии с их ионными потенциалами.

 

2. Свойство связи соединений. Эти свойства характеризуют способность соединений противостоять усилиям, направленным на их разрушение. Связь элементов в соединении определяется рядом параметров, среди которых необходимо указать на особенности внутреннего строения соединения и энергию его кристаллической решётки. Наибольшей механической прочностью обладают образования с большой энергией кристаллической решётки, с плохо выраженной спайностью и повышенной твёрдостью.

3. Химические свойства соединений. Говоря о наиболее распространённых в условиях земной поверхности соединениях ― карбонатах, хлоридах, сульфатах, следует учитывать, что только карбонаты Na, K, Cr растворимы в воде в значительной степени, тогда как прочие либо нерастворимы, либо растворимы незначительно; хлориды Na, Mg, Mn, Ni, K, Ca, Fe, Cu, Zn, Sr, Cd, Sn, Sb, Ba, Pt, Pb растворимы в воде, Cr, Ag, Au, Hg, Bi ― нерастворимы; в свою очередь в воде растворимы сульфаты Na, Mg, K, Mn, Cr, Fe, Co, Ni, Zn, Cd, Sn, Pt, остальные ― не растворимы или слабо растворимы. Мономинеральные породы разлагаются быстрее полиминеральных, присутствие изоморфных примесей может играть роль катализатора или ингибитора процессов выветривания.

4. Гравитационные свойства атомов.

5. Радиоактивный распад ядер атомов.

 

 

Внешние факторы миграций

В каждой геосфере Земли создаются специфические внешние факторы миграции в зависимости от изменения соотношений температуры, давления и концентрации раствора. Эти параметры обусловливают специфику термодинамики системы, которая, в свою очередь, создает условия для формирования тех или иных геохимических процессов. Рассмотрим особенности формирования среды, в которой постоянно протекают миграция, концентрация и рассеивание элементов.

Ведущими факторами природной среды являются 1) температура, 2) давление, 3)концентрация раствора, в гипергенной зоне дополнительно влияет тип климата. В зависимости от соотношения факторов изменяются условия от активной миграции элементов в жарком гумидном климате до их концентрации в аридном климате. В гипогенных условиях активная миграция возможна при высоком давлении и температуре, а кристаллизация – при понижении этих параметров. Таким образом, воздействие внешних факторов следует рассматривать самостоятельно в двух сферах: гипергенной и гипогенной.

Гипергенная зона является главным местом действия солнечной радиации. Под ее влиянием прямо или косвенно протекают все гипергенные процессы и связанная с ними миграция элементов. Потребление энергии и ее расход изменяются в зависимости от природной зоны. На ежегодную продукцию растительной массы затраты энергии колеблются от 2,5 кал/см2 в год в тундре до 2000 кал/см2 в год во влажнотропических лесах (для лесов умеренных широт 100–400 кал/см2 в год). На разрушение минералов и освобождение элементов (минеральное преобразование) затрачивается 0,2–0,5 кал/см2 в год в тундре и пустыне и 10–15 кал/см2 в год во влажных тропиках.

Скорость геохимических процессов определяется динамикой тем­пературы. В теплый сезон контрасты температур колеблются от 5–6 °С до 40–50 °С. Повышение температуры активизирует процессы и миграцию. В тундре из-за низких температур геохимические процессы и миграция замедлены, во влажных тропических лесах высокая температура и влажность повышают скорость процессов и миграцию в 9,5 раза. Использование энергии на процессы во влажных тропических лесах в 30–35 раз выше по сравнению с тундрой.

Давление как фактор миграции элементов в зоне гипергенеза имеет меньшее значение, чем температура. В пределах вертикального профиля атмосферное давление составляет 1 атм и изменяется не более чем ± 3 %. Такое колебание давления активизирует лишь растворение газов в воде и косвенно влияет на гидролиз минералов.

Различное соотношение температур и увлажнения приводит к формированию различных типов климата. Среди них наиболее контрастные аридный и гумидный типы. В аридном климате при выпотном водном режиме создаются условия для активизации галогенеза, повышенной концентрации растворов, прежде всего, галогенов, щелочных и щелочноземельных металлов (Na, K, Rb, Cs, Ca, Mg, Ba, Cl, Br, I и др.). Гумидный климат создает промывной тип водного режима, который способствует выносу всех легкорастворимых и концентрации труднорастворимых соединений Fe, Al, Ti, Zr и др. Концентрация растворов минимальная. Моря и океаны отличаются повышенной концентрацией растворов, из которых осаждаются тяжелые элементы.

Гипогенная зона характеризуется высокими и сверхвысокими температурами, давлением и концентрацией химических элементов, что приводит к метаморфизации и магматизации пород, насыщению водных гидротермальных растворов. Во внутренних сферах Земли миграция элементов ограничена. В магме они распределяются более или менее равномерно и дифференцируются под действием гравитации: более легкие оказываются в верхней зоне, а тяжелые – в нижней. Снижение ведущих параметров гипогенной зоны приводит к трансформации фазы в ходе кристаллизации и последовательности образования минеральных видов с включением изоморфных форм более редких элементов. В ходе кристаллизации и других гипогенных процессов вблизи поверхности Земли, при излиянии магмы или извержении вулканов, происходит равномерное или концентрированное распределение элементов на разных глубинах в виде месторождений.

Большинство освоенных месторождений железных руд по генезису обязано формированию под влиянием гипергенных процессов настоящего или геологического времени.

3. Степень электролитической диссоциации.

4. Концентрация водородных ионов (pH).Данный фактор в ряде случаев контролирует осаждение из растворов химических соединений и коагуляцию (пептизацию) коллоидов. Большинство металлов, растворяясь в кислых растворах, образуют катионы, которые с повышением pH обычно выпадают в осадок в виде гидрооксидов. В щелочной среде элементы, обладающие амфотерными свойствами, могут снова перейти в растворённое состояние и образовать комплексные ионы.

Указать точные значения pH, при которых в природных условиях происходит осаждение или растворение элемента, затруднительно, так как на данный процесс оказывают влияние многочисленные сильно варьирующие факторы [2]. Применительно к почвам, различают: активную (pH) ― концентрация водородных ионов в почвенном растворе или суспензии; обменную (pHKCl) ― результат обмена поглощённых коллоидами ионов H+ и Al3+ на катион солевого раствора (KCl); и гидролитическую кислотность (H) ― результат реакции почвы с раствором соли сильного основания и слабой кислоты (CH3COONa). pH почвы влияет на интенсивность микробиологической деятельности, растворение минералов, усвоение питательных веществ растениями и др.

 

Таблица 1. pH и Eh природных сред

 

Среда рН Eh
Метеорные воды 3,0―7,2 +200―+800
Торфяные болота 2,8―8,0 ―350―+700
Почвы 2,8―10,0 ―350―+750
Грунтовые воды 5,5―9,0 ―100―+500
Рудничные воды:    
первичные 5,0―9,0 ―100―+200
окисленные 3,0―9,0 +200―+800
Пресные воды (реки и озёра) 5,0―9,0 ―50―+600
Пресноводные осадки 5,5―7,5 -150―+600
Прибрежные морские осадки 6,5―9,0 ―350―+500
Морская вода 6,0―9,5 ―200―+500
Мировой океан в среднем 8,0 +400
Осадки открытого моря 6,0―8,5 ―400―+600
Эвапориты 6,0―10,0 ―400―+600
Термальные воды 2,0―9,0 ―200―+700

 

5. Окислительно-восстановительный потенциал (Eh) мера окислительной или восстановительной тенденции, присущей данной системе (табл.1). В сочетании с pH влияет на валентное состояние элементов переменной валентности (Mn2+«Mn4+, Fe2+«Fe3+ и т. д.). Окислительная (кислородная) обстановка способствует накоплению катионогенных элементов (например, Mn, Fe, Co) и увеличению растворимости анионогенных (S, V, Se, Mo, U) (табл. 2).

 

Таблица 2

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...