Концепция химического элемента
Концепция химического элемента появилась в химии как результат стремления человека обнаружить первоэлемент природы. Корни решения данной проблемы уходят в Древнюю Грецию, где возникли учения о первоэлементах природы. Там же возникла и атомистическая концепция природы, возрожденная в Новое время в химии Р. Бойлем. Именно он положил начало современному представлению о химическом элементе как о простом теле, пределе химического разложения вещества, переходящем без изменения из состава одного сложного тела в другое. Но еще целый век после этого химики делали ошибки в выделении химических элементов. Дело в том, что, сформулировав понятие химического элемента, химики еще не знали ни одного из них. Стремясь получить элементы в чистом виде, они пользовались считавшимся тогда универсальным методом прокаливания, и окалину принимали за чистый элемент. Так что известные тогда металлы — железо, медь, свинец — принимали за сложные тела, состоявшие из соответствующего элемента и флогистона. Однако именно флогистонная теория, ложная по сути, оказалась двигателем многих исследований, приведших в итоге к истинным выводам. Этот вывод был сделан Д.И. Менделеевым, доказавшим, что свойства химического элемента зависят от места данного атома в периодической системе. Сам Менделеев определял это место по атомной массе, но в XX в. было выяснено, что порядковый номер элемента зависит не от атомной массы, а от заряда атомного ядра и количества электронов. В настоящее время известно, что атом представляет собой сложную квантово-механическую систему, состоящую из положительно заряженного ядра и отрицательно заряженной электронной оболочки. Выяснены особенности строения электронных орбиталей атомов всех элементов и особая роль внешнего электронного уровня атома, от количества электронов в котором зависит реакционная способность элемента — химическая активность вещества, учитывающая как разнообразие реакций, возможных для данного вещества, так и их скорость. Наиболее активными с химической точки зрения являются элементы, имеющие минимальную атомную массу и 6—7 электронов на внешнем электронном уровне (фтор, хлор, кислород). Это связано с тем, что они стремятся достроить свою электронную оболочку путем присоединения недостающего числа электронов. Также большой реакционной способностью отличаются металлы, обладающие большой атомной массой и имеющие 1—2 электрона на внешнем электронном уровне (барий, цезий), стремящиеся отдать их для его достройки.
Современный окружающий человека мир заполнен многочисленными соединениями, образованными элементами периодической системы Менделеева. Во времена самого Менделеева было известно всего 62 химических элемента. В 30-е гг. XX в. таблица Менделеева включала 88 элементов, а всего в ней было 92 клетки (элемент под номером 92 — это уран). Сегодня науке известно 110 химических элементов (элемент 109 получил название мейтнерий, 110-й элемент еще не имеет официального названия), и химиков продолжает волновать вопрос, сколько всего элементов в таблице Менделеева. Предполагается, что на первоначальной стадии развития Земли существовали трансурановые элементы с порядковыми номерами до 106-го. Такие элементы имели небольшую продолжительность жизни по сравнению с возрастом Земли и поэтому полностью распались, не сохранившись до наших дней. Самым долгоживущим элементом из данной группы оказался плутоний-244 с периодом полураспада 82,2 млн. лет. В 1971 г. из минерала бастнезита удалось выделить некоторое количество атомов этого элемента. Но в основном все трансурановые элементы были получены искусственным путем. В 1940 г. был синтезирован нептуний, после этого были зарегистрированы еще 15 трансурановых элементов с номерами до 107-го.
Трансурановые элементы с атомными номерами до 100-го можно получить в ядерном реакторе путем бомбардировки ядер изотопа урана-238 нейтронами. Более тяжелые элементы получают только в ускорителях в очень незначительных количествах. Для этого уран бомбардируют ионами ксенона, гадолиния, самария, гафния или самого урана. В результате этого образуются очень тяжелые промежуточные ядра. Но такие реакции стали возможны лишь с 1971 г., когда появились новые мощные ускорители, способные разогнать тяжелые ионы до высоких энергий. Современная теория позволяет с большой вероятностью рассчитать стабильность сверхтяжелых элементов и предсказать их физические и химические свойства. Поэтому химики предполагают, что элементы с порядковыми номерами между 114-м и 164-м должны обладать неожиданно высокой стабильностью. Считается, что в районе этих порядковых номеров в периодической системе должен существовать так называемый островок стабильности, на котором возможно получение изотопов с периодом полураспада 108 лет. Верхняя граница стабильности должна приближаться к номеру 174. Если эти элементы будут получены, то их можно будет использовать в промышленном производстве и энергетике. Но для их синтеза нужны новые экспериментальные методы и технические средства. Химическим элементом называют все атомы, имеющие одинаковый заряд ядра. Особой разновидностью химических элементов являются изотопы, у которых ядра атомов отличаются числом нейтронов (поэтому у них разная атомная масса), но содержат одинаковое число протонов и поэтому занимают одно и то же место в периодической системе элементов. Термин «изотоп» был введен в 1910 г. Фредериком Содди, известным английским радиохимиком, лауреатом Нобелевской премии. Различают стабильные (устойчивые) и нестабильные (радиоактивные) изотопы. С момента открытия изотопов наибольший интерес вызвали радиоактивные изотопы, которые стали широко использоваться в атомной энергетике, приборостроении, медицине и т.д. В настоящее время выпускается огромное количество различных приборов, содержащих радиоактивные изотопы. Они служат для определения плотности, однородности, гигроскопичности и других характеристик материалов.
Довольно широко используется метод меченых атомов, который позволяет проследить за перемещением химических соединений при физических, химических и биологических процессах Для этого в исследуемое вещество вводятся радиоактивные изотопы определенных элементов и ведется наблюдение за их продвижением. Так можно проследить за превращением веществ как в доменной печи, так и в живом организме. Например, с помощью изотопа кислорода-18 стало возможным выяснение механизма дыхания живых организмов. В медицине с помощью радиоактивных изотопов лечат многие заболевания, в том числе онкологические. Кроме того, батареи небольшой мощности на изотопах плутония-238 и кюрия-224 применяются в приборах для стабилизации ритма сердца. В химической промышленности изотопы используются для облучения полиэтилена и других полимеров с целью повышения их термостойкости и прочности. Таким образом, правильное использование радиоактивных изотопов приносит несомненную пользу человечеству. К сожалению, в последнее время об этом стали забывать, все меньше доверяя радиации, которая ассоциируется с атомной бомбой или Чернобыльской катастрофой. Забыты те времена, когда радиоактивность и рентгеновское излучение были только что открыты и их посчитали панацеей в медицине. Мало кто помнит о том, что в начале XX в. в свободной продаже были радиевые подушки, радиоактивная зубная паста и косметика, считавшиеся полезными для здоровья. Уже в 20—30-е гг. XX в. появились первые свидетельства того, что радиоактивное излучение неблагоприятно влияет на живые организмы, вызывая генетические изменения — мутации, а также различные виды онкологических заболеваний. Последствия атомной бомбардировки Хиросимы и Нагасаки подтвердили эти выводы. Поэтому современная медицина двойственно относится к радиации. С одной стороны, говорится, что только в малых дозах радиация безопасна (в природе существует естественный радиоактивный фон), с другой — продолжают использовать рентгеновское обследование и лучевую терапию в лечебных целях.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|