Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Задание 4. Сравнение выборок с альтернативными признаками по критерию Фишера.




Лабораторная работа № 4

Сравнение выборок. Параметрические критерии.

Задание 1. Сравнение по критерию Стьюдента. Сравним два ряда цифр, характеризующих привесы (г) барашков одного возраста при добавлении в корм специальной подкормки (234, 277, 214, 201, 174, 167, 184, 157, 196, 173, 190, 191, 141, 150, 191) и без нее (183, 154, 175, 159, 157, 189, 198, 165, 176, 124, 173, 182, 204, 151, 147).

1) Проверьте можно с помощью двух вариантов критерия Стьюдента:

для случаев n1=n2 и S1=S2

для случаев n1≠n2 или S²1≠S²2

Для этого предварительно нужно рассчитать, стандартное отклонение и среднеквадратичное отклонение.

2) В среде Excel определить величину T можно с помощью двух функций. Первая из них имеет формат: =ТТЕСТ(массив1;массив2;хвосты;тип),

где массив1 – диапазон со значениями вариант первой выборки,

массив2 – диапазон со значениями вариант второй выборки,

хвосты – число, определяющее какой критерий используется, односторонний или двусторонний; обычно неизвестно, какая их средних величин должна быть больше, поэтому ставим 2 (двухсторонний),

тип– число, определяющее тип выполняемого теста.

Расчетные уровни значимости можно перевести впривычную форму T критерия Стьюдента с помощью второй функции: =СТЬЮДРАСПОБР(вероятность;степени_свободы), где вероятность – уровень значимости, рассчитанный функцией =ТТЕСТ, т. е. ссылка на ячейку, содержащую формулу этой функции, степени_свободы – число степеней свободы df = n1+n2–2.

Задание 2. Сравнение по критерию Фишера. При определении показателя плодовитости (число эмбрионов на самку) двух популяций красной полевки с разным уровнем численности (у первой, горной, популяции плотность населения в два раза выше, чем у равнинной: n1 = 27, n2 = 12) получили следующие данные:

популяция горная: 4 5 8 5 5 7 9 3 3 3 5 5 6 6 7 6 6 5 5 8 9 6 6 6 5 5 4

популяция равнинная: 5 7 5 5 5 4 8 8 5 6 6 6

1) Найдите среднюю арифметическую, дисперсию. Проверьте статистическую достоверность дисперсий, используя формулу:

2) В среде Excel определить величину F можно с помощью двух функций. Первая из них имеет формат: =ФТЕСТ(массив1;массив2),

где массив1 – диапазон со значениями вариант первой выборки,

массив2 – диапазон со значениями вариант второй выборки.

Результатом выполнения этой функции оказывается уровень значимости, соответствующий степени различия дисперсий, т. е. вероятность того, что различия дисперсий недостоверны. Поскольку обычно в биологии принимают в качестве границы уровень значимости α = 0.05, все значения функции ФТЕСТ, меньшие 0.05, будут свидетельствовать о достоверных отличиях между выборочными дисперсиями.

Расчетные уровни значимости можно перевести в привычную форму F критерия Фишера с помощью второй функции: =FРАСПОБР(вероятность;степени_свободы1;степени_свободы2),

где вероятность – уровень значимости, рассчитанный функцией ФТЕСТ или ссылка на ячейку, содержащую формулу этой функции,

степени_свободы1 – число степеней свободы для выборки с большей дисперсией, df1 = n1–1,

степени_свободы2 – число степеней свободы для выборки с меньшей дисперсией, df2 = n2–1.

 

Задание 3. Сравнение выборок с альтернативными признаками по критерию Стьюдента.При изучении влияния эндотоксина на выживаемость облучённых животных были получены следующие результаты:

контрольная группа (всего 14 особей): выжило 3; погибло 11

опытна группа (всего 36 особей): выжило 23; погибло 13

Необходимо оценить достоверность разницы среди выживших животных между контрольной и опытной группой.

1) сначала вычислите ошибку разности выборочных долей по формуле:

N1+N2

mdp = √ pq ---------- , где

N1N2

 

N – объёмы выборок; p и q – средние взвешенные долей; n –объём пробы

М1 + М2 p1n1 + p2n2

p = -------------- = ----------------- q = 1-p

N1 + N2 N1 + N2

 

n – размер пробы

М – средняя арифметическая.

N – объём выборки

 

2) затем определите её достоверность по критерию Стьюдента:

/p2-p1/ /p2-p1/

t = ------------------------- = ------------------

√p1q1/N1 + p2q2/N2 mdp

 

Задание 4. Сравнение выборок с альтернативными признаками по критерию Фишера.

Оценка достоверности с использованием критерия φ предпочтительнее в том случае, если они сильно отличаются друг от друга (р ≤ 25 %), при этом доли выражаются в % и с поправкой Иейтса на непрерывность, равной ½ N. В этом случае достоверность проверяется тремя возможными способами:

критерием Стьюдента по формуле:

φ2 - φ1 1 1

t = ------------- ; m= √--------- + ---------

m N1 N2

критерием Фишера по формуле:

N1N2

Fφ = (φ1 – φ2)2 ---------- ;

N1 + N2

путём сопоставления доверительных интервалов, построенных с помощью критерия φ. Если интервалы не накладываются друг на друга, то разница между долями признаётся достоверной на определённом уровне знаний.

1) Воспользуйтесь данными предыдущего задания и формулами для работы с выборками, содержащие альтернативные признаки. Оцените разницу между долями тремя указанными способами.

 





Воспользуйтесь поиском по сайту:



©2015- 2022 megalektsii.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.