Общая классификация ошибок.
Формы организации образовательного процесса
Отбор материала обучения осуществляется на основе следующих дидактических принципов: систематизации знаний, полученных учащимися в начальной школе; соответствие обязательному минимуму содержания образования в основной школе; усиление общекультурной направленности материала; учет психолого-педагогических особенностей, актуальных для этого возраста; создание условий для понимания и осознания воспринимаемого материала. На изучение математики в 5 классе отводится 5 ч в неделю, 170 часов в год. В том числе 11 контрольных работ, включая итоговую контрольную работу. Уровень обучения – базовый.
Критерии и нормы оценки знаний, умений и навыков, обучающихся по математике
1. Оценка письменных контрольных работ обучающихся по математике. • Ответ оценивается отметкой «5», если: • работа выполнена полностью; • в логических рассуждениях и обосновании решения нет пробелов и ошибок; • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала). • Отметка «4» ставится в следующих случаях: • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки); • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки). • Отметка «3» ставится, если: • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.
• Отметка «2» ставится, если: • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.
Оценка устных ответов обучающихся по математике • Ответ оценивается отметкой «5», если ученик: • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником; • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности; • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу; • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания; • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков; • отвечал самостоятельно, без наводящих вопросов учителя; • возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя. • Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков: • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа; • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя; • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя. • Отметка «3» ставится в следующих случаях: • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
• имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя; • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме; • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков. • Отметка «2» ставится в следующих случаях: • не раскрыто основное содержание учебного материала; • обнаружено незнание учеником большей или наиболее важной части учебного материала; • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Общая классификация ошибок. • При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты. 3.1. Грубыми считаются ошибки: • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения; • незнание наименований единиц измерения; • неумение выделить в ответе главное; • неумение применять знания, алгоритмы для решения задач; • неумение делать выводы и обобщения; • неумение читать и строить графики; • неумение пользоваться первоисточниками, учебником и справочниками; • потеря корня или сохранение постороннего корня; • отбрасывание без объяснений одного из них; • равнозначные им ошибки; • вычислительные ошибки, если они не являются опиской; • логические ошибки. 3.2. К негрубым ошибкам следует отнести: • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными; • неточность графика; • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными); • нерациональные методы работы со справочной и другой литературой; • неумение решать задачи, выполнять задания в общем виде. 3.3. Недочетами являются: • нерациональные приемы вычислений и преобразований; • небрежное выполнение записей, чертежей, схем, графиков.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|