Доказательство закона больших чисел
Проведем это доказательство в два этапа. Сначала предположим, что
При t > Отбросим теперь ограничительное условие существования D( Определим два новых набора случайных величин, зависящих от
Uk= Uk=0, Vk=
Здесь k=1,…, п и
при всех k. Пусть {f(
конечна. Тогда существует и
где суммирование производится по всем тем j, при которых U1, U2,..., Un. Кроме того,
Далее, из (2.5) и (2,4) следует, что
Uk взаимно независимы, и с их суммой U1+U2+…+Un можно поступить точно так же, как и с Xk в случае конечной дисперсии, применив неравенство Чебышева, мы получим аналогично (2.1)
Вследствие (2.6) отсюда вытекает, что
Далее заметим, что с большой вероятностью Vk = 0. Действительно,
Поскольку ряд (2.4) сходится, последняя сумма стремится к нулю при возрастании n. Таким образом, при достаточно большом п
P{Vk
и следовательно
P{V1+…+Vn
Но
Так как Теория «безобидных» игр
При дальнейшем анализе сущности закона больших чисел будем пользоваться традиционной терминологией игроков, хотя наши рассмотрения допускают в равной степени и более серьезные приложения, а два наших основных предположения более реальны в статистике и физике, чем в азартных играх. Во-первых, предположим, что игрок обладает неограниченным капиталом, так что никакой проигрыш не может вызвать окончания игры. (Отбрасывание этого предположения приводит к задаче о разорении игрока, которая всегда интригует изучающих теорию вероятностей.) Во-вторых, предположим, что игрок не имеет нрава прервать игру, когда ему заблагорассудится: число п испытаний должно быть фиксировано заранее и не должно зависеть от хода игры. Иначе игрок, осчастливленный неограниченным капиталом, дождался бы серии удач и в подходящий момент прекратил бы игру. Такого игрока интересует не вероятное колебание в заданный момент, а максимальные колебания в длинной серии партий, которые описываются скорее законом повторного логарифма, чем законом больших чисел. Введем случайную величину
Заметим, что мы еще ничего не говорили о случае Ясно, что в «нормальном случае» существует не только M( Для определенности представим машину, при опускании в которую рубля игрок может с вероятностью 10 выиграть (10—1) рублей, а в остальных случаях теряет опущенный рубль. Здесь мы имеем испытания Бернулли и игра является «безобидной». Проделав миллион испытаний, игрок уплатит за это миллион рублей. За это время он может выиграть 0, 1,2,... раз. Согласно приближению Пуассона для биномиального распределения, с точностью до нескольких десятичных знаков вероятность выиграть ровно к раз равна e-1/k!. Таким образом, с вероятностью 0,368... игрок потеряет миллион, и с той же вероятностью он только окупит свои расходы; он имеет вероятность 0,184... приобрести ровно один миллион и т. д. Здесь 106 испытаний эквивалентны одному-единствеиному испытанию при игре с выигрышем, имеющим распределение Пуассона.
Очевидно, бессмысленно применять закон больших чисел в такого рода ситуациях. К этой схеме относится страхование от пожара, автомобильных катастроф и т. п. Риску подвергается большая сумма, но зато соответствующая вероятность очень мала. Однако здесь происходит обычно только одно испытание в год, так что число п испытаний никогда не становится большим. Для застрахованного игра обязательно не является «безобидной», хотя, может быть, экономически вполне выгодной. Закон больших чисел здесь не при чем. Что касается страховой компании, то она имеет дело с большим числом игр, но из-за большой дисперсии все же проявляются случайные колебания. Размер страховых премий должен быть установлен таким, чтобы предотвратить большой убыток в отдельные годы, и, следовательно, компанию интересует скорее задача о разорении, чем закон больших чисел. Когда дисперсия бесконечна, термин «безобидная» игра становится бессмысленным; нет никаких оснований считать, что общий
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|