Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Основные характеристики топлива




Общеизвестны основные разновидности топлива –дрова, торф, уголь, сланцы, нефтяные остатки, газ. Все они представляют собой органические соединения, способные при высоких температурах вступать в реакцию с кислородом воздуха, при чем происходит выделение тепла. Существует немало реакций, протекающих с выделением тепла, однако в качестве топлива применяются наиболее дешевые и удобные для сжигания реагенты. Топливо добывается в большом количестве, запасы его в природе весьма значительны. Требующийся для реакции кислород берется из окружающего воздуха. В результате реакции получаются сильно нагретые газообразные продукты сгорания, тепло которых используется в котельной установке. Охлажденные газы через дымовую трубу выбрасываются в атмосферу. Для сжигания может использоваться как естественное топливо, гак и искусственное, полученноепосле переработки естественного топлива с целью выделения из него ценныхпродуктов, к которым относятся смолы, бензины, бензолы, минеральныесмазочные масла, краски, фармацевтические продукты, сернокислый аммоний, идущий для нужд сельского хозяйства, и др. Ниже приводится главнейший перечень разновидностей углей.

 

Таблица 1.3.1а Классификацияуглей по размеру кусков (ГОСТ 19242 –73)

Класс Условное обозначение Размер кусков, мм
Плиточный П Более 100
Крупный К 50–100
Орех О 25–50
Мелкий М 13–25
Семечко С 6–13
Штыб Ш Менее 6
Рядовой Р 0–200

 

Таблица 1.3.1б–Маркировка каменных углей

Наименование марок угля Обозначение Выход летучих веществ на горючую массу,Vг,%
Длиннопламенный Д >35
Газовый Г >35
Газовый жирный ГЖ 27–37
Жирный Ж 27–37
Коксовый жирный КЖ 25–31
Кокосовый К 18–27
Коксовый второй К2 17–25
Слабоспекающийся СС 25–37
Отощенный спекающийся ОС 14–22
Тощий Т 8–17

 

Топливо, расходуемое на сжигание в топках котлов или печей, называется рабочим топливом. Если мы отберем пробу рабочего топлива и исследуем ее в химической лаборатории, определив элементарный состав, то получим следующее равенство:

 

WP+AP+SP+CP+HP+NP+OP=100%,

 

где индексом «P»отмечается рабочее топливо.

Эта характеристика рабочего состава топлива дается в процентах к весу. Указанные элементы не являются механической смесью, они находятся втопливе в виде сложных соединений. Горючими элементами топлива являются CP, HP и SP –углерод, водород и летучая горючая сера –в отличие отсеры негорючей, входящей в состав минеральных негорючих примесей топлива, образующих после его сжигания золу AP. Чем больше процентное содержание горючих элементов в топливе, тем выше его теплотворная способность –величина, указывающая количество больших калорий, выделяемых при сжигании 1 кг топлива.

OP –кислород, находящийся в топливе; тепла, как известно, не выделяет.

NP –азот, находящийся в топливе; элемент инертный, не участвующий в реакциях горения. Из топлива азот попадает в отходящие газы и примешивается к азоту воздуха, подаваемого для горения. Азот и кислород называются внутренним балластом топлива в отличие от балласта внешнего, к которому относятся зола и влага.

Зола AP –это негорючая минеральная часть топлива; в нее входят по преимуществу соли щелочных и щелочноземельных металлов, окислы кремния, железа, алюминия и пр., а также и минеральная сульфатная сера в соединениях CaSO4 и MgSO4. Накопление золы в ископаемом топливе происходит не сразу, а в три периода. Сначала появляется так называемая зола внутренняя (первичная), находившаяся в растениях, послуживших материалом для образования торфяников, а впоследствии и угольных пластов. Затем количество золы в топливе увеличивается за счет заноса земли и песка ветром и водой (вторичная зола). И, наконец, зола в топливо попадает при его добыче от загрязнения породой (третичная зола).

Сера S встречается в трех видах: органическая и колчеданная, или летучая горючая сера, а также сульфатная негорючая сера. Летучая сера дает 10 МДж теплоты.

Общая сера, находящаяся в топливе, разбивается на две части –горючую и негорючую. Минеральная сера входит в состав золы, а летучая в свою очередь может быть расчленена на две составляющие:

 = ,где

–органическая сера, входящая в состав основного ядра топлива, его материнского вещества;

–сера колчеданная, находящаяся в соединении с железом (FeS2–серный колчедан), вкрапленная в топлива до известной степени случайно и в значительной степени поддающаяся отбору при сортировке топлива. Сера в топливе, невзирая на то, что часть ее сгорает, считается примесью нежелательной, так как продукты ее сгорания вредно действуют на котельную установку и загрязняют окружающий воздух.

Влага в топливе WP –также примесь балластная, ее наличие особенно сильно сказывается в смысле снижения теплового эффекта горения, так как мало того, что вода своим присутствием уменьшает долю горючих элементов в единице веса топлива, она при горении топлива испаряется, отнимая на это часть тепла реакции. Находящаяся в топливе влага подразделяется на внешнюю и гигроскопическую. Оставшаяся часть влаги –гигроскопическая –удаляется из пробы топлива лабораторным путем.

Количество теплоты, выделяемое при полном сгорании единицы топлива, называется его теплотворностью, или теплотой сгорания и измеряется в кДж/кг или кДж/м3. Теплота сгорания – основной параметр органического топлива, характеризующий его энергетическую ценность. Различают высшую и низшую теплоту сгорания. За высшую теплотворность принимают количество теплоты, выделенное 1 кг (или 1 м3) рабочего топлива, причем, считают, что водяные пары, образующиеся от сгорания водорода и испарения влаги топлива, конденсируются. Низшей теплотой сгорания топлива называют количество теплоты, выделенное 1 кг (или 1 м3) рабочего топлива, без учета конденсации водяных паров.

В реальных условиях водяные пары уходят в атмосферу, не сконденсировавшись, и поэтому для расчетов используют низшую теплоту сгорания топлива. Теплота меньше на теплоту парообразования водяных паров (2460 кДж/кг). Удельная теплота сгорания твердого и жидкого топлива определяется сжиганием 1 г топлива в калориметрической бомбе, заполненной кислородом, которая помещается в сосуд (калориметр) с водой, а приращение температуры воды измеряется метастатическим термометром. Удельная теплота сгорания газообразного топлива определяется в калориметре путем сжигания исследуемого газа в воздушной среде. Расход газа измеряется счетчиком, а выделившаяся при этом теплота передается потоку проточной воды, расход которой определяется взвешиванием, а приращение температуры – термометрами.

Для обеспечения полного сгорания топлива в топочное устройство подводят воздуха больше, чем теоретически необходимо. Отношение действительно поступившего количества воздуха V д к теоретически необходимому V о, называется коэффициентом избытка воздуха αт. Топки паровых и водогрейных котлов, как правило, работают с разрежением 2…3 мм вод. ст., в связи с чем происходит подсос воздуха и в топку и во все элементы котельной установки по ходу газового тракта, вплоть до дымососа. Присосы воздуха для каждого элемента котла и ориентировочно могут быть приняты:

• 0,05 – для первого конвективного пучка (газохода), фестона (с камерой догорания), пароперегревателя, воздухоподогревателя;

• 0,1 – для второго конвективного пучка (газохода), конвективной шахты, чугунного и стального экономайзера с обшивкой;

• 0,15…0,2 – для чугунного экономайзера без обшивки.

Поэтому коэффициент избытка воздуха в уходящих топочных газах – αух больше чем в топке, на суммарное значение присосов воздуха Σ∆α и составляет: αух = αт + Σ∆α.

Расход сжигаемого топлива должен обеспечивать получение необходимого количество полезной теплоты, а также восполнение тепловых потерь, сопровождающих работу котельной установки. Полезно используемая теплота в котельной установке Q 1 идет на подогрев воды, ее испарение, получение

и перегрев пара. Соотношение, связывающее приход и расход теплоты, носит название теплового баланса. Тепловой баланс составляется на 1 кг твердого или жидкого топлива, на 1 м3 газообразного топлива

или в% от введенной теплоты. Суммарное количество введенной в топку теплоты называется располагаемой теплотой другая запись уравнения теплового баланса:

100 = q1 + q2 + q3 + q4 + q5 + q6.

Работа теплогенерирующей установки сопровождается потерями теплоты, выраженными обычно в долях, %:

qi= (Qi/ ) 100.

1.Потери теплоты с уходящими топочными газами котлоагрегата:

q 2 = (Q 2 / )100, %.

В котлоагрегате это, чаще всего, наибольшая часть тепловых потерь. Потери теплоты с уходящими топочными газами можно понизить за счет:

• снижения объема дымовых топочных газов, путем поддержания требуемого коэффициента избытка воздуха в топке αт и уменьшения присосов воздуха;

• снижения температуры уходящих топочных газов, для чего применяют хвостовые поверхности нагрева: водяной экономайзер, воздухоподогреватель, контактный теплообменник.

Температура уходящих топочных газов (140…180 °С) считается рентабельной и во многом зависит от состояния внутренней и внешней поверхности нагрева труб котла, экономайзера. Отложение накипи на внутренней поверхности стенок труб котла, а также сажи (летучей золы) на внешней поверхности нагрева существенно ухудшают коэффициент теплопередачи от топочных газов к воде и пару. Увеличение поверхности экономайзера, возду-

хоподогревателя для более глубокого охлаждения дымовых газов не является целесообразным, так как при этом уменьшается температурный напор ∆ Т и увеличивается металлоемкость. Повышение температуры уходящих топочных газов может произойти в результате неправильного процесса эксплуатации и сжигания топлива: большой тяги (топливо догорает в кипятильном пучке); наличия неплотности в газовых перегородках (газы напрямую идут по газоходам котельного агрегата, не отдавая теплоты трубам – поверхностям нагрева), а также при большом гидравлическом сопротивлении внутри труб (за счет отложения накипи и шлама).

2. Химический недожог q 3 = (Q 3 / )100, %.

Потери теплоты от химической неполноты сгорания топлива определяются по результатам анализа летучих горючих веществ Н2, СО, СН4 в уходящих дымовых топочных газах. Причины химической не-

полноты сгорания: плохое смесеобразование, недостаток воздуха, низкая температура в топке.

3. Механический недожог q 4 = (Q 4 / )100, %.

Потери теплоты от механической неполноты сгорания топлива характерны для твердого топлива и зависят от доли провала топлива через колосниковую решетку в систему шлакозолоудаления, уноса частичек несгоревшеготоплива с дымовыми газами и шлаком, который может оплавить частицу твердого топлива и не дать ей полностью сгореть.

4. Потери теплоты от наружного охлаждения ограждающих конструкций

 

q 5 = (Q 5 / )100, %.

 

Возникают ввиду разности температуры наружной поверхности теплогенератора и окружающего наружного воздуха. Они зависят от качества изолирующих материалов, их толщины. Для поддержания q 5 в заданных пределах необходимо, чтобы температура наружной поверхности теплогенератора – его обмуровки не превышала 50°С. Потери теплоты q 5 уменьшаются по ходу движения топочных газов по газовому тракту, поэтому для теплогенератора введено понятие коэффициента сохранения теплоты  = 1 − 0,01 q 5.

5. Потери с физической теплотой шлака q 6 = (Q 6 / ) 100, %.

Возникают за счет высокой температуры шлаков порядка 650 °С, и характерны только при сжигании твердого топлива.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...