Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Классификация сталей по структурному признаку

Введение

 

Развитие технологии и оборудования сварочных процессов идет в настоящее время достаточно быстрыми темпами. Это вызвано все более возрастающей потребностью создания качественных неразъемных соединений как из однородных, так и разнородных материалов.

Сварка – технологический процесс получения неразъемных соединений материалов посредством установления межатомных связей между свариваемыми частями при их местном или общем нагреве, или пластическом деформировании, или совместном действием того и другого.

Сварка – экономически выгодный, высокопроизводительный и в значительной степени механизированный технологический процесс, широко применяемый практически во всех отраслях машиностроения.

Физическая сущность процесса сварки заключается в образовании прочных связей между атомами или молекулами на соединяемых поверхностях заготовок. Для образования соединений необходимо выполнение следующих условий: освобождение свариваемых поверхностей от загрязнений, оксидов и адсорбированных на них инородных атомов; энергетическая активация поверхностных атомов, облегчающая их взаимодействие друг с другом; сближение свариваемых поверхностей на расстояния, сопоставимые с межатомным расстоянием в свариваемых заготовках.

Указанные условия реализуются различными способами сварки путем энергетического воздействия на материал в зоне сварки. Энергия вводится в виде теплоты, упругопластической деформации, электронного, ионного, электромагнитного и других видов воздействия. В результате поверхностные атомы металлов и кристаллических неметаллических материалов образуют общие для соединяемых заготовок кристаллические решетки, а на поверхности пластмасс происходит объединение частей молекулярных цепей.

В зависимости от формы энергии, используемой для образования сварного соединения, все виды сварки разделяют на три класса: термический, термомеханический и механический.

К термическому классу относят виды сварки, осуществляемые плавлением с использованием тепловой энергии (дуговая, плазменная, электрошлаковая, электроннолучевая, лазерная, газовая и др.).

К термомеханическому классу относят виды сварки, осуществляемые с использованием тепловой энергии и давления (контактная, диффузионная и др.).

К механическому классу относят виды сварки, осуществляемые с использованием механической энергии и давления (ультразвуковая, взрывом, трением, холодная и др.).

 

 


Выбор материала для изготовления изделия

Условия работы лопаток и требования к материалу

Для изготовления диафрагменной лопатки предоставлена высокохромистая жаропрочная сталь мартенситно-ферритного класса 12Х13 (ГОСТ 18968–73). Подбор данной стали осуществлен из условий эксплуатации изделия. Лопатки являются наиболее нагруженными деталями паровых турбин. Лопатки паровых турбин подразделяются на направляющие (диафрагменные), закрепленные в статоре и рабочие – на роторе. На диафрагменные лопатки в основном действуют только аэродинамические силы, которые являются не стационарными, а переменными. Воздействующая среда, которая направляется диафрагменными лопатками, достигает температуры 400 0С. При этом имеет место неравномерный нагрев лопаток. Из-за взаимного воздействия приложенных сил материал лопатки испытывает меняющиеся по значению, но всегда высокие напряжения, что приводит к возникновению вибрации усталости материала.

Поверхности лопаток подвержены химическому воздействию среды. Химическая агрессивность водяного пара на материал лопаток особенно сильно проявляется с повышением начальной температуры, что приводит к постепенному разрушению материала, вызванного его эрозией. Поверхности лопаток (как на роторе, так и в диафрагме) последних ступеней паровых турбин при этом разъедаются со стороны входной кромки частицами воды влажного пара. Поэтому для лопаток применяют высококачественные материалы. От таких материалов требуют прочности при высокой температуре, высокой пластичности, сопротивления ползучести, коррозионной стойкости, высокой усталостной прочности, высокого декремента затухания.

Классификация сталей по структурному признаку

Номенклатура марок сталей, применяемых в настоящее время в различных отраслях промышленности для изготовления сварных конструкций, исключительно широка, а все возможные сочетания из их разнородных соединений практически трудно перечислить. Поэтому для упрощения задачи классификации и выбора наиболее распространенные (преимущественно стандартизованные) марки сталей, разделены исходя из структурного состояния на три основных класса:

1. – перлитные (углеродистые и низколегированные);

2. – ферритные и ферритно-мартенситные (высокохромистые);

3. – аустенитные и ферритно-аустенитные (хромоникелевые).

Каждый класс разделен, в свою очередь, на группы, в которую включены стали с относительно близкими свойствами, свариваемостью и служебными характеристиками.

Разделение высоколегированных сталей на группы (кислотостойкие, жаростойкие, жаропрочные) произведено в соответствии с их основными служебными свойствами и в некоторой степени условно, так как кислотостойкие стали одновременно являются жаростойкими до определенных температур, а жаростойкие являются также коррозионостойкими в определенных средах и т.д.

Для определения структурного класса сталей часто пользуются диаграммой Я.М. Потака и Е.А. Сагалевича, которая позволяет полуколичественно определять фазовый состав сталей. Наиболее существенным отличием этой диаграммы является то, что по осям координат откладываются хромовые эквиваленты ферритообразования (абцисса) и мартенситообразования (ордината), причем последний рассчитывается по степени влияния всех легирующих элементов на температуру начала мартенситного превращения.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...