Интерфероны, природа, способы получения и применения
Интерферон представляет собой семейство белков-гликопротеидов, которые синтезируются клетками иммунной системы и соединительной ткани. В зависимости от того, какими клетками синтезируется интерферон, выделяют три типа: α, β и γ-интерфероны. Альфа-интерферон вырабатывается лейкоцитами и он получил название лейкоцитарного; бета-интерферон называют фибробластным, поскольку он синтезируется фибробластами — клетками соединительной ткани, а гамма-интерферон — иммунным, так как он вырабатывается активированными Т-лимфоцитами, макрофагами, естественными киллерами, т. е. иммунными клетками. Интерферон синтезируется в организме постоянно, и его концентрация в крови держится на уровне примерно 2 МЕ/мл (1 международная единица — ME — это количество интерферона, защищающее культуру клеток от 1 ЦПД50 вируса). Выработка интерферона резко возрастает при инфицировании вирусами, а также при воздействии индукторов интерферона, например РНК, ДНК, сложных полимеров. Такие индукторы интерферона получили название интерфероногенов. Помимо противовирусного действия интерферон обладает противоопухолевой защитой, так как задерживает пролиферацию (размножение) опухолевых клеток, а также иммуномодулирующей активностью, стимулируя фагоцитоз, естественные киллеры, регулируя антителообразование В-клетками, активируя экспрессию главного комплекса гистосовместимости.
Механизм действия интерферона сложен. Интерферон непосредственно на вирус вне клетки не действует, а связывается со специальными рецепторами клеток и оказывает влияние на процесс репродукции вируса внутри клетки на стадии синтеза белков. Применение интерферона. Действие интерферона тем эффективнее, чем раньше он начинает синтезироваться или поступать в организм извне. Поэтому его используют с профилактической целью при многих вирусных инфекциях, например гриппе, а также с лечебной целью при хронических вирусных инфекциях, таких как парентеральные гепатиты (В, С, D), герпес, рассеянный склероз и др. Интерферон дает положительные результаты при лечении злокачественных опухолей и заболеваний, связанных с иммунодефицитами. Интерфероны обладают видоспецифичностью, т. е. интерферон человека менее эффективен для животных и наоборот. Однако эта видоспецифичность относительна. Получение интерферона. Получают интерферон двумя способами: а) путем инфицирования лейкоцитов или лимфоцитов крови человека безопасным вирусом, в результате чего инфицированные клетки синтезируют интерферон, который затем выделяют и конструируют из него препараты интерферона; б) генно-инженерным способом — путем выращивания в производственных условиях рекомбинантных штаммов бактерий, способных продуцировать интерферон. Обычно используют рекомбинантные штаммы псевдомонад, кишечной палочки со встроенными в их ДНК генами интерферона. Интерферон, полученный генно-инженерным способом, носит название рекомбинантного. В нашей стране рекомбинантный интерферон получил официальное название «Реаферон». Производство этого препарата во многом эффективнее и дешевле, чем лейкоцитарного. Рекомбинантный интерферон нашел широкое применение в медицине как профилактическое и лечебное средство при вирусных инфекциях, новообразованиях и при иммунодефицитах.
23. Факторы специфического иммунитета при вирусных болезнях. Роль клеточного иммунитета в защите организма от вируса Специфическая система иммунитета имеет свои центральные (костный мозг, тимус, фабрициева сумка у птиц, печень у млекопитающих) и периферические органы (селезенка, лимфатические узлы, лимфоидные ткани желудочно-кишечного тракта, а также кровь и лимфа, в которые поступают и непрерывно в них циркулируют все иммунокомпетентные клетки). Органом иммунитета является лимфоидная ткань, а его основными исполнителями — макрофаги (а также другие антиген-представляющие клетки), различные популяции и субпопуляции Т- и В-лимфоцитов. Основной мишенью действия иммунной системы являются антигены, подавляющее большинство которых имеет белковую природу. Лимфоциты представлены двумя большими популяциями — В — и Т-клетками, которые ответственны за специфическое распознавание антигенов. Возникнув из общей исходной, так называемой стволовой клетки, и пройдя соответствующую дифференцировку в центральных органах иммунной системы, Т- и В-лимфоциты приобретают иммунокомпетентность, выходят в кровь и непрерывно циркулируют по организму, выполняя роль его эффективных защитников. Т-лимфоциты обеспечивают клеточный тип иммунных реакций, а В-лимфоциты — гуморальный тип иммунного ответа. Дифференцировка предшественников Т-лимфоцитов в иммунокомлетентные клетки («обучение») происходит в тимусе под влиянием гуморальных факторов, секретируемых тимусом; созревание В-лимфоцитов — у птиц в бурсе, у млекопитающих сначала в печени плода, а после рождения в костном мозге. Зрелые В- и Т-лимфоциты приобретают способность распознавать чужеродные антигены. Они покидают костный мозг и тимус и заселяют селезенку, лимфатические узлы и другие скопления лимфатических клеток. Подавляющее большинство Т- и В-лимфоцитов циркулирует в крови и лимфе. Такая постоянная циркуляция обеспечивает контакт как можно большего числа соответствующих лимфоцитов с антигеном (вирусом). Каждая В-клетка генетически запрограммирована на синтез антител к одному определенному антигену. Встретив и распознав этот антиген, В-клетки размножаются и дифференцируются в активные плазматические клетки, секретирующие антитела на данный антиген. Другая часть В-лимфоцитов, пройдя 2—3 цикла деления, превращается в клетки памяти, которые не способны к выработке антител. Они могут жить много месяцев и даже лет без деления, циркулируя между кровью и вторичными лимфоидными органами. Быстро распознают антиген при повторном его поступлении в организм, после чего клетки памяти приобретают способность к делению и превращаются в плазматические клетки — секретирующие антитела.
Таким же образом образуются клетки памяти из Т-лимфоцитов. Это можно назвать «резервом» иммунокомпетентных клеток. Клетки памяти определяют продолжительность приобретенного иммунитета. При повторном контакте с данным антигеном они быстро превращаются в клетки-эффекторы. При этом В-клетки памяти обеспечивают синтез антител в более короткий срок, в большем количестве и в основном IgG. Установлено, что существуют Т-хелперы, которые определяют переключение классов иммуноглобулинов. Различают два варианта выдачи иммунного ответа в форме биосинтеза антител: первичный ответ — после первой встречи организма с анти — 1 сном; вторичный ответ — при повторном контакте с антигеном, через 2—3 нед. Они различаются по следующим показателям: продолжительностью латентного периода; скоростью нарастания титра антител, общего количества синтезируемых антител; последовательностью синтеза иммуноглобулинов различных классов. Клеточные механизмы первичного и вторичного иммунных ответов также отличаются. При первичном иммунном ответе отмечают: биосинтез антител после латентного периода продолжается 3— 3 дней; скорость синтеза антител относительно невелика; титр антител не достигает максимальных значений; первыми синтезируются IgM, затем IgG и позже IgA и IgE. Вторичный иммунный ответ характеризуется: латентный период — в пределах нескольких часов; скорость синтеза антител имеет логарифмический характер; титр антител достигает максимальных значений; синтезируется сразу IgG.
Вторичный иммунный ответ обусловлен клетками иммунной памяти. Т-клетки имеют несколько популяций с различными функциями. Одни взаимодействуют с В-клетками, помогая им размножаться, созревать и образовывать антитела, а также активируют макрофаги — хелперные Т-клетки (Тх); другие угнетают иммунные реакции — супрессорные Т-клетки (Тс); третья популяция Т-клеток осуществляет разрушение клеток организма, зараженных вирусами или иными агентами. Этот тип активности назван цитотоксичностью, а сами клетки — цитотоксическими Т-клетками (Тц) или Т-киллерами (Тк). Поскольку Т-хелперы и Т-супрессоры действуют как регуляторы иммунного ответа, эти два типа Т-лимфоцитов называют Т-клетками регуляторами. Существенным фактором в противовирусном иммунитете являются макрофаги. Они не просто уничтожают чужеродные антигены, но и предоставляют антигенные детерминанты для запуска цепи иммунных реакций (презентируют). Поглощенные макрофагами антигены расщепляются на короткие фрагменты (антигенные детерминанты), которые связываются с молекулами белков главного комплекса гистосовместимости (ГКГС I, II) и транспортируются на поверхность макрофагов, где они распознаются Т-лимфоцитами (Тх, Тк) и В-лимфоцитами, что приводит к их активации и размножению. Т-хелперы, активируясь, синтезируют факторы (медиаторы) для стимуляции В- и Т-лимфоцитов. Активированные Т-киллеры размножаются и образуется пул цитотоксических Т-лимфоцитов, способных обеспечить гибель клеток-мишеней, т. е. клеток, зараженных вирусом. Главным свойством всех клеток-киллеров является то, что под их влиянием и клетке-мишени запускаются механизмы алоптоза (запрограммированной гибели клетки). Лизис клетки происходит после отсоединения киллера, что позволяет одному киллеру лидировать несколько клеток-мишеней. В процессе лизиса участвуют секретируемые лимфоцитами перфорины и гранзимы. Перфорин, встраиваясь в мембрану клетки, формирует в ней канал, через который в клетку проникает пода. Клетка разбухает и лизируется. Считают, что гранзимы обусловливают индукцию апоптоза. Активированные В-лимфоциты размножаются и дифференцируются в плазматические клетки, которые синтезируют и секретируют антитела соответствующего класса (IgM, IgG, IgA, IgD, IgE). Координированное взаимодействие макрофагов, Т- и В-лимфоцитов при встрече с антигеном обеспечивает как гуморальный, так и клеточный иммунный ответ. Для всех форм иммунного ответа требуется согласованное взаимодействие основных факторов иммунной системы: макрофагов, Т-, В-лимфоцитов, NK-клеток, системы интерферонов, комплемента, главной системы гистосовместимости. Взаимодействие между ними осуществляется с помощью разнообразных синтезируемых и секретируемых медиаторов.
Медиаторы, вырабатываемые клетками иммунной системы и участвующие в регуляции ее активности, получили общее название цитокинов (от греч. cytos — клетка и kineo — приводить в движение). Их подразделяют на монокины — медиаторы, продуцируемые моноцитами и макрофагами; лимфокины — медиаторы, секретируемые активированными лимфоцитами; лимфокины, которые химически идентифицированы и получены в чистом виде. В 1979 г. было предложено назвать их интерлейкинами. Они обозначаются номерами — 1, 2, 3, 4, 5 и т. д. Семейство интерлейкинов пополняется новыми представителями, которые осуществляют взаиморегуляцию иммунной, нервной и эндокринной систем. Все иммунокомпетентные клетки на своих мембранах несут уникальные рецепторы, с помощью которых они распознают и воспринимают сигналы от других иммунных клеток, перестраивают свой метаболизм, синтезируют или устраняют свои собственные рецепторы. Благодаря этому все клетки иммунной системы функционируют как хорошо отлаженная система.
24. Вирусные белки, их роль в серодиагностике. Специфические антитела. Характеристика иммуноглобулинов. Белки вирусов Локализация вирусных белков Белки, связанные с жизненным циклом вируса, разделяют на белки, детерминируемые геномом вируса и белки, имеющие клеточное происхождение. В качестве примера клеточных белков, которые обнаружены в составе некоторых вирионов, могут быть приведены белок цитоскелета — актин, и ядерные белки — гистоны. Белки клеточного происхождения, участвующие в процессе репликации вируса, будут рассмотрены в разделе взаимодействия вируса с клеткой. По месту локализации белки, детерминируемые вирусным геномом, разделяют на две группы: 1) структурные белки — это белки, входящие в состав ВЧ, их обозначают как VP; 2) неструктурные белки — это предшественники структурных белков, регуляторные белки и ферменты, обслуживающие процесс внутриклеточной репродукции вируса и не входящие в состав ВЧ. Их обозначают как NS-белки (схема). В состав вирионов входят белки с различной молекулярной массой (от 4 до 100 кД), состоящие из одной или нескольких полипептидных цепей. Количество этих белков также различно у разных вирусов. В состав нуклеокапсида ВТМ входит один белок. У других вирусов в состав вириона может входить несколько десятков белков, имеющих различные физико-химические свойства. Белки, формирующие капсид, нуклеокапсид и коровую оболочку, обладают одним общим свойством — способностью к самосборке.
Сложные белки представлены гликопротеинами (обозначают как gp) и липопротеинами. Наличие гликопротеина определяет присутствие в вирионе углеводного компонента, который может быть представлен олигосахаридами маннозного типа, галактозой, N-ацетилглюкозамином или нейраминовой кислотой. Вирусные гликопротеины, как правило, экспонированы на наружной поверхности ВЧ и выполняют три основные функции: обеспечивают связывание вириона с клеточным рецептором (функция прикрепительного белка), обладают фузионной активностью (обеспечивают слияние мембран) и определяют антигенные свойства вирусов. В то же время, вирусные гликопротеины могут быть и неструктурными белками и, оставаясь в интегральной форме в мембране шероховатого эндоплазматического ретикулюма (ШЭР), выполнять функции транслоказ, обеспечивая транспорт вирусных компонентов в его просвет. ДНК-зависимая ДНК-полимераза — осуществляет синтез ДНК на матрице ДНК (вирус оспы). ДНК-зависимая РНК-полимераза — осуществляет синтез мРНК на матрице ДНК (вирус оспы). РНК-зависимая РНК-полимераза — осуществляет синтез РНК на матрице РНК. Выполняет функции транскриптазы и репликазы. Впервые обнаружена в 1970 г. Балтимором у вируса везикулярного стоматита. Входит в состав вирионов или является NS-белком РНК-содержащих вирусов. Обратная транскриптаза или ревертаза или РНК-зависимая ДНК-полимераза осуществляет синтез ДНК на матрице РНК. Впервые открыта в 1970 г. у ретровирусов Темином и Мизутани. мРНК-модифицирующие ферменты: поли-А-полимераза — аденилирует 3'-конец РНК за счет энергии АТФ; Кэп-энзим и метилтрансферазный комплекс — катализирует образование на 5'-конце кэп-структуры. АТФ-аза, ГТФ-аза — осуществляют гидролиз соответствующих энергетических субстратов. Рибонуклеаза Н — разрушает РНК, находящуюся в дуплексе с ДНК. Вторая группа вирусных ферментов — ферменты белкового обмена. Здесь мы приведем лишь некоторые из них: Протеиназы — ферменты, участвующие в посттрансляционном процессинге полипротеинов. Являются NS-белками РНК-содержащих вирусов; Протеинкиназы — ферменты, фосфорилирующие структурные белки вирионов. Обнаружены в составе вируса везикулярного стоматита, вируса бешенства, альфавирусов и ретровирусов. Примерами ферментов, участвующих в проникновении вирусов в клетку, являются лизоцим бактериофагов и нейраминидаза вируса гриппа.
В процессе формирования приобретенного инфекционного иммунитета важная роль принадлежит антителам (анти - против, тело - русское слово, т. е. вещество). И хотя чужеродный антиген блокируется специфическими клетками организма и подвергается фагоцитозу, активное действие на антиген возможно лишь при наличии антител. Антитела - специфические белки, иммуноглобулины, образующиеся в организме под воздействием антигена и обладающие свойством специфически с ним связываться и отличающиеся от обычных глобулинов наличием активного центра. Антитела являются важным специфическим фактором защиты организма против возбудителей болезней и генетически чужеродных веществ и клеток. Антитела делятся на группы:
Молекула антитела включает четыре полипептидные цепи, состоящие из аминокислот. Две из них тяжелые (м.м. 70000 дальтон) и две легкие (м.м. 20000 дальтон). Легкие и тяжелые цепи связаны между собой дисульфидными мостиками. Легкие цепи являются общими для всех классов и подклассов. Тяжелые цепи имеют характерные особенности строения у каждого класса иммуноглобулинов. В молекуле антитела имеются активные центры, располагающиеся на концах полипептидных цепей и специфически реагирующие с антигеном. Неполные антитела одновалентны (антидетерминанта одна), полные имеют две, реже более антидетерминантны. Отличие специфических иммуноглобулинов в строении тяжелых цепей, в пространственном рисунке антидетерминант. Согласно классификации Всемирной организации здравоохранения (ВОЗ), различают пять классов основных иммуноглобулинов: IgG циркулируют в крови, составляют 80% всех антител. Проходят через плаценту. Молекулярная масса 160000. Размер 235 х 40Аo. Важны как специфический фактор иммунитета. Обезвреживают антиген путем его корпускуляризации (преципитации, осаждения, агглютинации), что облегчает фагоцитоз, лизис, нейтрализацию. Способствуют возникновению аллергических реакций замедленного типа. По сравнению с другими иммуноглобулинами IgG относительно термоустойчив - выдерживает нагревание при 75oС 30 мин. По характеру воздействия на антиген различают антитела:
Реакция антиген-антитело может быть для организма полезной, вредной или индифферентной. Положительное влияние реакции в том, что она нейтрализует яды, бактерии, облегчая фагоцитоз, преципитирует белки, лишая их токсичности, лизирует трепонемы, лептоспиры, животные клетки
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|