Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Методы изготовления резьбы

РЕФЕРАТ

 

На тему: «Соединения деталей и узлов машин»

 

Проверил:

_________________ Иванов Л. П.

<<_____>>________________2008 г.

Выполнил: Кузнецов Н.П.

<<_____>>________________2008 г.

 

Оренбург 2008

Содержание

 

1 Общие сведения о соединениях........................................................ 3

2 Клеммовые соединения..................................................................... 3

3 Клеевые соединения.......................................................................... 4

4 Заклепочные соединения................................................................... 5

5 Конические соединения..................................................................... 10

6 Клиновые соединения....................................................................... 12

7 Профильные соединения................................................................... 14

8 Сварные соединения......................................................................... 15

9 Паяные соединения........................................................................... 19

10 Шлицевые соединения..................................................................... 21

11 Штифтовые соединения................................................................... 25

12 Шпоночные соединения.................................................................. 27

13 Резьба............................................................................................... 29

14 Соединения с натягом..................................................................... 34

Список использованной литературы.................................................. 43


 

Общие сведения о соединениях

 

Общей тенденцией развития соединений является приближение их к целым деталям и удовлетворение условию равнопрочности с соединенными элементами. Иначе мате­риал соединяемых элементов не будет пол­ностью использован.

Соединения по признаку возможности разборки делят на неразъемные, ко­торые нельзя разобрать без разрушения или повреждения (заклепочные, сварные), и разъемные, позволяющие повторные сборку и разборку (резьбовые, клиновые, шлицевые и др.).

Неразъемные соединения осуществля­ются силами молекулярно-механического сцепления (сварные, паяные, клеевые) или механическими средствами (клепаные, со­единения с натягом, вальцованные).

Соединения элементов сосудов и трубо­проводов, содержащих жидкости или газы, должны удовлетворять условиям плотно­сти (герметичности). Для этого контакти­рующие поверхности механических соеди­нений должны быть сжаты давлением, существенно превышающим давление среды.


 

Клеммовые соединения

 

Клеммовыми называют фрикционные соединения деталей с соосными цилиндрическими посадочными поверхностями, в которых требуемое радиальное давление (натяг) и фиксация за счет сил трения создаются путем деформации изгиба ох­ватывающей детали затянутыми болтами (в соответстивии с рисунком 1).

 

Рисунок 1 – Клеммовые соединения

 

Эти соединения применяют для пере­дачи вращающего момента и осевой силы между валами, осями и призма­тическими деталями (рычагами, щеками сборных коленчатых валов, частями уста­новочных колец и т. п.).

При проектировании соединения обычно требуется определить силу затяжки, обес­печивающую взаимную фиксацию деталей и передачу требуемого вращающего мо­мента, а также оценить прочность болта (болтов) и охватывающей детали (клем­мы).

В приближенном расчете можно принять, что контактные напряжения от затяжки равномерно распределены по по­верхности контакта (как в соединении с натягом). Тогда средние контактные на­пряжения  q всвязаны со сдвигающей нагрузкой Q соотношением

 

Если соединение имеет п болтов (в од­ном или двух рядах, см. рис. 5, б), затянутых силой F о,то условие равновесия клеммы (рис. 5, в) имеет вид пF о= qld.

Учитывая равенство и последнее соотношение, получим

Диаметр резьбы болта для обеспечения такой силы затяжки

где [σP] – допускаемое напряжение для материалов болта.

    Оценку прочности клеммы можно выполнить путем расчета методом конечных элементов или по теории колец.


 

Клеевые соединения

Клеевые соединения - это соединения неметаллическим веществом посредством поверхностного схватывания (адгезии) и внутренней межмолекулярной связи (ко­гезии) в клеящем слое.

Достоинствами этих соединений являют­ся: возможность соединения деталей из разнородных материалов, соединения тон­ких листов, пониженная концентрация на­пряжений и хорошее сопротивление уста­лости, возможность обеспечения герметич­ности, уменьшенная масса, возможность получения гладкой поверхности изделия.

Применяемые в машиностроении клеи подразделяют на термореактивные - эпо­ксидные, полиэфирные, фенолоформаль­дегидные, полиуретановые; термоплас­тичные на основе полиэтилена, поливенил­хлорида; эластомеры на основе каучуков. При нормальной температуре 18?20 °С предел прочности на сдвиг большинства клеев 10?20 МПа (предельные достигае­мые значения 30?50 МПа); при 200?250 °С снижается на 30?50 %.

Клеи на основе кремнийорганических соединений и неорганических полимеров (в частности, ВК2) обладают теплостой­костью до 700?1000 °С, но меньшей проч­ностью и повышенной хрупкостью.

Наряду с жидкими клеями применяют клеи в виде пленок, которые вкладывают между соединяемыми деталями, а потом нагревают и сжимают.

Основным недостатком клеевых соедине­ний является их слабая работа на неравно­мерный отрыв, что накладывает требова­ния на конструкцию соединений. Наиболее широко применяют соединения внахлестку, работающие на сдвиг. Стыковые соедине­ния для обеспечения прочности выполняют по косому срезу (на «ус») или предусмат­ривают накладки. При увеличении толщи­ны клеевого слоя прочность падает. Опти­мальная толщина слоя 0,05?0,15 мм.

Успешно применяют клей для повыше­ния прочности сопряжения зубчатых колес с валами и зубчатых венцов со ступицами. Клей начинают использо­вать при установке наружных колец под­шипников качения в корпус, для уплотне­ния и стопорения резьбовых соединений, для присоединения пластинок режущего инструмента.

Для особопрочных соединений, испы­тывающих произвольную нагрузку, вклю­чая неравномерный отрыв, и вибрацион­ную нагрузку, применяют комбинирован­ные соединения, клеесварные и клеезакле­почные, клеерезьбовые.

Комбинированные соединения обеспе­чивают равнопрочность с целыми листа­ми и широко применяются в ответствен­ных машинах (в частности, в тяжелых самолетах соединяемые поверхности по несколько сот квадратных метров).

Клеесварные соединения выполняют обычно в виде сочетания клеевых и то­чечных сварных швов. Толстые листы соединяют двухрядными швами с шахмат­ным расположением точек. Точечную сварку преимущественно производят по жидкому (эпоксидному) клею.

Клеезаклепочные соединения еще прочнее клеесварных. Их обычно выпол­няют по незатвержденному (фенольному БФ-1, БФ-2 и др.) клею, что исключает необходимость сдавливания соединяемых листов при склеивании.

Успешно применяют клееболтовые со­единения.

Рассеяние энергии в клеевых соедине­ниях на 20?30 % больше, чем в обычных фрикционных.


Заклепочные соединения

Заклепка (в соответстивии с рисунком 2) представляет со­бой стержень круглого сечения с головка­ми на концах, одну из которых, называе­мую закладной, выполняют на заготовке заранее, а вторую, называемую замыкаю­щей, формируют при клепке. Заклепки стягивают соединяемые детали, в результате чего часть или вся внешняя продольная нагруз­ка на соединения передается силами тре­ния на поверхности стыка.

 

Рисунок 2 – Заклёпка с полукруглыми головками и простейшее заклёпочное соединение

 

Заклепочные соединения разделяют на: 1) силовые (иначе называемые прочны­ми соединениями), используемые преиму­щественно в металлических конструкциях машин, в строительных сооружениях;

2) силовые плотные (иначе называемые плотнопрочными соединениями), исполь­зуемые в котлах и трубах, работающих под давлением.

Плотность также можно обеспечить с помощью клея.

Преимуществами заклепочных соедине­ний являются стабильность и контролируе­мость качества. Недостатки - повышен­ный расход металла и высокая стоимость, неудобные конструктивные формы в связи с необходимостью наложения одного листа на другой или применения специальных накладок. В настоящее время заклепочные соединения в большинстве областей вытес­нены сварными и этот процесс продол­жается.

Область практического применения за­клепочных соединений ограничивается сле­дующими случаями:

1) соединения, в которых нагрев при сварке недопустим из-за опасности отпуска термообработанных деталей или коробле­ния окончательно обработанных точных деталей;

2) соединения несвариваемых материа­лов;

3) соединения в самолетах, например в пассажирском самолете применяют до 2,5 миллионов заклепок;

    4) соединения в автомобилестроении для рам грузовых машин.   Заклепки изготовляют из прутков на вы­садочных автоматах.

Клепку стальными заклепками диамет­ром до 8?10 мм, а также заклепками из латуни, меди и легких сплавов всех диа­метров производят холодным способом, а остальных заклепок - горячим спосо­бом.

Материал заклепок должен быть доста­точно пластичным для обеспечения воз­можности формирования головок и одно­родным с материалом соединяемых дета­лей во избежание электрохимической коррозии. Стальные заклепки обычно изго­товляют из сталей Ст2, Ст3, 09Г2 и др.

Государственными стандартами пред­усмотрены следующие виды заклепок.

Заклепки со сплошным стерж­нем: с полукруглой головкой (ГОСТ 10299-80* и ГОСТ 14797-85, рисунок 3, а),имеющие основное применение в силовых и плотных швах; с плоской головкой (ГОСТ 14801-85, в соответстивии с рисунком 3, б),предна­значенные для работы в коррозионных средах; с потайной головкой (ГОСТ10300-80*, ГОСТ 14798-85, в соответстивии с рисунком 3, в), применяемые при недопустимости высту­пающих частей, в частности в самоле­тах; с полупотайной головкой для соеди­нения тонких листов.

Заклепки полупустотелые (ГОСТ 12641-80*, ГОСТ 12643-80, г, д, е)и пустотелые(ГОСТ 12638-80* - ГОСТ 12640-80*, в соответстивии с рисунком 3, ж, з, и)применяют для соединения тонких листов и неметаллических деталей, не допускающих больших нагрузок.

 

Рисунок 3 – Стандартные стальные заклёпки

 

Для увеличения ресурса заклепочных соединений создают радиальный натяг, ре­сурс при этом увеличивается в 2?4 раза.

Для крепления лопаток некоторых паро­вых и газовых турбин применяют заклепки, устанавливаемые под развертку и рабо­тающие в основном на сдвиг.

Наиболее отработаны конструкции, ти­паж и технология заклепочных соединений в авиационной промышленности.

Кроме традиционных заклепок приме­няют:

1) заклепки из стержней с одно­временным расклепыванием обеих головок и образованием гаран­тированного натяга по цилиндрической по­верхности;

2) заклепки с потайной головкой и компенсатором - местной выпук­лостью на головке, деформируемой приклепке и уплотняющей контакт головки;

3) заклепки для швов с односто­ронним подходом и с сердечни­ком, который при осевом пере­мещении распирает заклепку, образуя замыкающую головку, а потом обрывается и фрезеруется для обеспечения гладкой поверхности;

Рисунок 4 – Стержневые заклёпки для односторонней клёпки

 

4) взрывная заклепка того же на­значения, у которой замыкающая головка образуется в результате взрыва вещества, заложенного в отверстие заклепки; взрыв вызывается нагревом закладной головки и стержня;

5) болт-заклепка в виде стержня, устанавливаемого с натягом, и высокой шайбы; при установке болта гайку обжимают на стержне, имеющем в этом месте кольцевые канавки; потом хвос­товую часть стержня обрывают;

6) заклепка с большим сопро­тивлением сдвигу в виде твердой пустотелой заклепки с потайной головкой, притягиваемой винтом.

              Заклепочные соединения по конструкции разделяют на соединения внахлестку (в соответстивии с рисунком 5, а),соединения с одной накладкой (в соответстивии с рисунком 5, б) и соединения с двумя наклад­ками (в соответстивии с рисунком 5, в).

Рисунок 5 – Основные типы заклёпочных соединений

 

Заклепочные соединения применяют так­же для деталей машин общего назначения, например для крепления венцов зубчатых колес к ступицам, лопаток в турбинах, противовесов коленчатых валов, тормоз­ных лент и обкладок, для соединения дета­лей рам и колес автомобилей и т. д.

При конструировании рекомендуется придерживаться следующих правил:

1) в элементах, работающих на растя­жение или сжатие для уменьшения их из­гиба, заклепки следует располагать воз­можно ближе к оси, проходящей через центр массы сечений, или симметрично от­носительно этой оси;

2) в каждом соединении для устранения возможности относительного поворота со­единяемых деталей желательно использо­вать не менее двух заклепок;

3) заклепки по возможности следует размещать таким образом, чтобы соеди­няемые элементы ослаблялись меньше и их материал использовался более полно, т. е. следует предпочитать шахматное располо­жение рядному.

Расчет заклепочных соединений. В со­ответствии с обычными условиями работы заклепочных соединений основными на­грузками для них являются продольные силы, стремящиеся сдвинуть соединяемые детали одну относительно другой. В плотном и точном соединениях необхо­димо, чтобы вся внешняя нагрузка во из­бежание местных сдвигов воспринималась силами трения.

Расчет заклепок в соединении, находя­щемся под действием продольной нагруз­ки, сводится по форме к расчету их на срез. Трение в стыке учитывают при выборе допускаемых напряжений среза. При цен­тральном действии нагрузки предполага­ется равномерное распределение сил между заклепками.

В заклепочном соединении допустимая нагрузка, отнесенная к одной заклепке,

где d - диаметр стержня заклепки; [τ]ср - условное допускаемое напряжение за­клепки на срез; i - число срезов.

При центрально действующей нагрузке F необходимое число заклепок z= F / F1.

Заклепки на смятие в односрезном или двухсрезном силовом соединении проверяют по формуле

где s - толщина стенки соединяемых де­талей.

Проверка на смятие плотных соединений не нужна, так как в них вся продольная нагрузка воспринимается силами трения в стыке.

Соединяемые элементы проверяют на прочность в сечениях, ослабленных заклеп­ками:

Допускаемое напряжение для соедине­ний стальных деталей заклепками из ста­лей Ст2 и Ст3 при расчете по основным нагрузкам: на срез заклепок [τ]ср=140 МПа и на смятие [σ]см=280?320 МПа, на растяжение соединяемых элементов из стали Ст3 [σ]р=160 МПа.

При холодной клепке допускаемые на­пряжения в заклепках снижают на 30 %.

Для элементов соединений с пробитыми и нерассверленными отверстиями допус­каемые напряжения снижают на 30 %.

Если соединение работает при редких знакопеременных нагрузках, допускаемые напряжения понижают умножением на коэффициент

где F minи F max- наименьшая и наиболь­шая по абсолютной величине силы, взятые со своими знаками. Для соединения эле­ментов из низкоуглеродистых сталей а= 1, b =0,3, а для соединений из среднеуглеро­дистых сталей а = 1,2, b = 0,8.

Потребная площадь элементов, рабо­тающих на растяжение под действием силы F,

где φ=(P-d)/P коэффициент прочности шва, величина которого обычно колеблется в пределах от 0,6 до 0,85; Р - шаг распо­ложения заклепок.

 При проектном расчете значением φ за­даются, а потом производят проверочный расчет.

 В групповых заклепочных соединениях, подверженных сложному напряженному состоянию, силы на одну заклепку опре­деляются, как в резьбовых соединениях.


Конические соединения

Конические соединения представляют собой разновидность фрик­ционных соединений, используемых для пе­редачи вращающего момента между дета­лями с соосными посадочными поверхностями. Обычно такие соединения применяют для закрепления деталей на кон­цах валов.

Натяг и контактные напряжения в конических соединениях (в отличие от цилин­дрических соединений) создаются затяж­кой.

Уравнение равновесия при равномерном распределении по длине контактных напря­жений q и касательных напряжений τf от трения (сцепления) имеет вид

где r1 и r2 - соответственно минималь­ный и максимальный радиусы конического участка вала в сопряжении.

Если учесть, что dz=dr·ctgα. то после интегрирования и несложных преобразо­ваний получим

  

где F 0 - сила затяжки соединения; dm и l - средний диаметр и длина соединения; α- угол наклона образующей конуса к оси вала; f - коэффициент трения пары вал - ступица.

Из соотношения видно, что с увеличением угла α (конусности) необ­ходимо увеличивать затяжку соединения для сохранения уровня контактных на­пряжений.

Обычно из технологических соображе­ний применяют небольшую конусность. По ГОСТ 21081-75 конусность

что соответствует α≈2°52' (d1 и d2 - минимальный и максимальный диаметры вала в соединении). При большей конусности на несущую способность соединений существенное влияние оказывают погрешности углов конуса вала и ступицы (втулки), т. е. в конических соединениях отношение f /tgα<1. При малом угле α можно при­нять, что диаметр вала dd m.

Вращающий момент, передаваемый сое­динением.

                           

Откуда требуемая минимальная сила затяжки соединения

где k =1,3?1,5 - коэффициент запаса сцепления;. f пр - приведенный коэффициент трения,

Из формулы следует, что на пере­даваемый вращающий момент влияют сила предварительной затяжки, средний диаметр и состояние поверхностей кон­такта.

Максимальная сила затяжки устанав­ливается из условий прочности (подобно максимальному расчетному натягу). Так как конусность невелика, то максималь­ная сила затяжки (tg α =0,5 K= 0,05)

где         D – наружный диаметр ступицы (втулки).

Затяжку соединений контролируют ди­намометрическим ключом или по осе­вому перемещению ступицы.

В процессе работы возможно ослабле­ние затяжкииз-за обмятия поверхностей контакта (особенно в соединении со шпон­кой).

Для фиксации осевого положения иног­да используют бурты на валах.


Клиновые соединения

Клиновым называют разъемное соединение, затягиваемое или регулируемое с помощью клина. Типичным примером клинового соеди­нения является соединение стержня со втулкой. Со­единение обычно затягивают, забивая клин или перемещая его посредством винта.

 

Рисунок 6 – Клиновые соединения стержня со втулкой

 

Достоинства клинового соединения: 1) бы­строта сборки и разборки; 2) возмжность создания больших сил затяжки и возможность восприятия больших нагрузок; 3) относитель­ная простота конструкции.

По назначению клиновые соединения раз­деляют на: 1) силовые, предназначенные для прочного скрепления деталей; 2) установочные, предназначенные для установки и регулирова­ния требуемого взаимного положения деталей.

Силовые соединения применяют для постоян­ного скрепления при редких разборках в маши­нах и при частой сборке и разборке в приспособ­лениях для обработки деталей на станках и в сборных литейных моделях.

Большинство силовых клиновых соединений выполняют с предварительным натягом: клином создается внутренняя сила, действующая и при отсутствии внешней нагрузки. Установочные клиновые соединения обычно выполняют без предварительного натяга с силовым замыкани­ем, преимущественно нагрузкой от сил тяжести.

В клиновых соединениях применяют почти исключительно односкосные клинья. Рабочие по­верхности клиньев выполняют цилиндрически­ми или плоскими с фасками. В крепежных клиновых соединениях уклоны выбирают из условия самоторможения равными 1:100, 1:50, в часто затягиваемых и установоч­ных клиньях - 1:20, 1: 10, 1:4.

 

Рисунок 7 – Расчётные схемы клинового соединения

 

Примерные соотношения размеров клиньев в соединении стержня диаметром d со втулкой:

толщина клина (из условия равнопрочности стержня на растяжение и на смятие клином) b= (0,25?0,3) d;высота сечения клина h≥ 2,5 b.

При забивании и выбивании клина (в соответстивии с рисунком 7), а суммарные силы на рабочих гранях кли­на наклонены к нормалям на угол трения φ в сто­рону, обратную перемещению клина. Обозначим силу забивания клина через F, а силу, развиваемую на стержне,- через Q. В устано­вочных клиновых соединениях она равна полез­ной внешней нагрузке Q = Q вн. В соединениях с предварительным натягом по условию, что после приложения внешней нагрузки в соедине­нии сохраняется натяг, расчетная сила в стер­жне Q =(1,25?1,5) Q вн. Согласно условию равновесия клина в направлении его оси мож­но записать F=Q [tg(α+φ)+tgφ].

Сила выбивания клина

Самоторможение определяется условием, что сила F 1больше или равна нулю. Полагая в пре­дыдущем уравнении F 1≥0, получаем

, отсюда α≤2φ.

Таким образом, угол односкосного клина или сумма углов сторон (угол заострения) дву­скосного клина должны быть меньше двойного угла трения на рабочих гранях.

Расчетный коэффициент трения обычно принимают равным 0,1; тогда φ≈5°45'. Однако при пластичном смазочном материале и чистых поверхностях коэффициент трения может сни­жаться до 0,04. Наоборот, при сухих обезжи­ренных поверхностях коэффициент трения возрастает до 0,2?0,3 и более. В крепежных клиновых соединениях обеспечивается значи­тельный запас самоторможения. При уклонах, меньших 1:25, и постоянной нагрузке нет не­обходимости в специальных стопорных уст­ройствах, предохраняющих соединения от самопроизвольного ослабления. В остальных случаях клинья специально закрепляют.

При расчёте клина предпологают, что давление по поверхности контакта распределяется равномерно (рисунок 7, б). В действительности распределение давления особенно при больших нагрузках более благоприятно для прочности клина на изгиб (рисунок 7, в).

Дополнительно проверяют поверхность кон­такта клина и втулки на смятие, хвостовую часть стержня на срез, а также прочность втул­ки как толстостенной трубы, подверженной внутреннему давлению.


 

Профильные соединения

Профильными назы­вают соединения, в которых ступица (втул­ка) насаживается на фасонную поверх­ность вала и таким образом обеспечи­вается жесткое фиксирование деталей в ок­ружном направлении и передача враще­ния. В качестве примера показано соединение на квадрате со скруг­ленными углами (для снижения концент­рации напряжений); применяются также соединения эллиптического и треугольного сечений.

 

Рисунок 8 – Профильное соединение

По сравнению со шпоночными и шлице­выми эти соединения имеют небольшую концентрацию напряжений и более высо­кую точность центрирования. Однако сложность изготовления профильной по­верхности ограничивает области примене­ния соединений.

Расчет соединений. Профильные соеди­нения рассчитывают на смятие. Условие прочности по допускаемым напряжениям для соединения имеет обычный вид:

 

где l - длина соединения, обычно l=(1?2)d; b - ширина прямолинейной части грани; [σсм]­ допускаемое напряжение смятия, для термообработанных поверхностей [σсм]=100?140 МПа.


 

Сварные соединения

Сварные соединения - это не­разъемные соединения, основанные на ис­пользовании сил молекулярного сцепления и получаемые путем местного нагрева де­талей до расплавленного состояния (свар­ка плавлением электродуговая, электро­шлаковая и др.) или до тестообразного со­стояния, но с применением механической силы (контактная сварка).

Дуговая сварка металлическим электродом осуществляется электрической дугой между электродом и изделием. Выделяе­мое тепло оплавляет соединяемые детали и расплавляет электрод (или присадочный материал), который дает дополнительный металл дляформирования шва. Дуговая электрическая сварка является крупным русским изобретением (Н. И. Бенардос, 1882 г., и Н. Г. Славянов, 1888 г.).

Основным способом механизированной дуговой сварки, обеспечивающим ысокое качество шва, производительность и экономичность процесса, является автоматическая сварка под слоем флюса. Особенно эффективно применение автоматической сварки в серийном производстве и для конструкций с длинными швами. Для конструкций с коротки­ми разбросанными швами применяют полу­автоматическую шланговую свар­ку, а при малом объеме сварочных работ­ ручную дуговую сварку.

Для сварки металлических деталей малой толщины, деталей из высоколегированных ста­лей, цветных металлов и сплавов получили рас­пространение дуговая сварка в среде защитных газов, сварка в углекислом газе и аргонодуговая сварка.

Электрошлаковая сварка так же, как и дуговая, представляет собой сварку плав­лением; при прохождении тока через шлаковую ванну от электрода к изделию выделяется теп­лота, расплавляющая основной и присадочный материалы. Электрошлаковая сварка предназ­начена для соединения деталей толщиной от30 мм до 1?2 м. Электрошлаковая сварка поз­воляет заменять сложные тяжелые цельноли­тые и цельнокованые конструкции сварными из поковок, отливок или листов, позволяет фор­мировать переходные поверхности (галтели), что значительно облегчает и удешевляет произ­водство. Электрошлаковую сварку применяют, в частности, для чугунных отливок.

Контактная сварка основана на разогреве стыка теплотой, выделяющейся при пропускании через него электрического тока, и сдавливании деталей. Контактную сварку при­меняют преимущественно в серийном и массо­вом производствах.

При сварке трением используется теп­лота, выделяемая в процессе относительного движения свариваемых деталей, преимущест­венно тел вращения.

Применяют также специальные виды сварки:

1) диффузионную, позволяющую соединять разнородные материалы и обеспечивающую ми­нимальное изменение свойств соединения по сравнению со свойствами основных материалов;

2) электронно-лучевую (весьма экономически выгодную) и лазерную, обеспечивающие узкую зону проплавления, малые деформации и поз­воляющие сварку закаленных деталей;

3) радиочастотную, преимущественно приме­няемую для тонких труб и весьма производи­тельную;

4) ультразвуковую в приборостроении для де­талей малой толщины из однородных и разно­родных металлов;

5) сварку взрывом, преимущественно для по­крытий.

Существенные перспективы, в частности для повышения

производительности сварки и резки, дает применение плазменного процесса.

Весьма эффективны наплавки, повышаю­щие износостойкость в 3?10 раз. Возможна наплавка слоя практически любого металла или сплава на заготовку из обычной конструкцион­ной стали.

Широко применяют восстановительные на­плавки, но еще недостаточно применяют наплав­ки, выполняемые в процессе изготовления, хотя они наиболее выгодны. Успешно наплавляют клапаны автомобильных двигателей и дизелей, лемехи, бандажи железнодорожных колес, про­катные валки.

Разработана сварка пластмасс газовыми теплоносителями, нагревательными элементами ТВЧ., ультразвуком, трением, с помощью хими­ческих реакций.

Сварные соединения по взаимному рас­положению соединяемых элементов можно разделить на следующие группы:

1) Соединения стыковые. Соединяемые элементы являются продолжением один другого, сварку производят по торцам.

2) Соединения нахлесточные. Боковые поверхности соединяемых элементов час­тично перекрывают одна другую.

3) Соединения тавровые. Соединяемые элементы перпендикулярны или реже на­клонны один к другому. Один элемент торцом приваривается к боковой поверх­ности другого.

4) Соединения угловые. Соединяемые элементы перпендикулярны или наклонны один к другому и привариваются по кром­кам.

Применение стыковых соединений, как наиболее близких к целым деталям, рас­ширяется, а применение нахлесточных­ сокращается.

Применение сварных конструкций обес­печивает существенную экономию металла по сравнению с клепаными и литыми. Экономия металла по сравнению с клепаными конструкциями получается в основном ввиду:

а) полного использования рабочих сече­ний соединяемых элементов без ослабле­ния их отверстиями для заклепок;

б) возможности непосредственного со­единения элементов без вспомогательных деталей (накладок).

Общая экономия металла составляет в среднем 15?20 %.

Экономия металла по сравнению с ли­тыми конструкциями достигается благо­даря:

 а) более высоким механическим свойст­вам материалов и меньшим остаточным напряжениям;

б) более тонким стенкам;

в) меньшим припускам на механиче­скую обработку.

 Сварные стальные конструкции легче чу­гунных литых на величины до 50%, а стальных литых - до 30 %.

Для сварки характерны высокие эконо­мические показатели: малая трудоемкость процесса, относительно низкая стоимость оборудования, возможность автоматиза­ции и т. д. Относительно низкая стоимость сварочного оборудования определяется тем, что оно не связано с использованием больших сил (как кузнечно-прессовое обо­рудование) и с необходимостью плавления большого количества металла (как литей­ное производство).

Недостатком сварки является неста­бильность качества шва, зависящая от квалификации сварщика. Этот недостаток в значительной степени устраняется приме­нением автоматической сварки.

Сварка является основным видом полу­чения соединений металлических строи­тельных конструкций. Наиболее прогрес­сивно изготовление металлических конст­рукций на заводах сваркой, а их соедине­ние на строительных объектах высоко­прочными болтами.

Сварка позволяет удешевлять и совер­шенствовать конструкции деталей, полу­ченных разными заготовительными опера­циями, поковок, проката, отливок и дета­лей из разных материалов.

Широкое применение находят сварные конструкции из гнутых или штампованных элементов. Эти конструкции допускают ра­циональные формы при малой трудоем­кости.

Общим исходным условием проектиро­вания сварных соединений является ус­ловие равно прочности шва и соединяемых элементов.

Расчет сварных конструкций. Прочность сварных соедине­ний при переменной нагрузке.

Сварные соединения, равнопрочные при статических нагрузках соединяемым эле­ментам, при переменных нагрузках оказы­ваются относительно слабее.

Это объясняется: 1) концентрацией напряжений (связанной с геометрией стыка, сварочными дефектами, а для фланго­вых и косых угловых швов – совместной работой с соединяемыми элементами); 2) остаточными напряжениями; в) литей­ной структурой шва, изменением струк­туры металла около шва и выгоранием легирующих компонентов.

Наибольшим сопротивлением перемен­ным нагрузкам обладают стыковые соеди­нения, особенно при снятых механической обработкой утолщениях.

Прочность сварных соединений при действии переменных нагрузок сильно за­висит от качества швов. Например, при наличии в стыковых швах даже незна­чительного непровара прочность снижает­ся на 50 %. Такое же снижение получается от сварки электродами с тонкими покры­тиями.

Большое значение имеет конструкция швов. Например, прочность при перемен­ных нагрузках тавровых соединений со скосами кромок в связи с меньшей кон­центрацией напряжений в 1,5 раза выше, чем без разделки кромок. От постановки накладок для усиления стыковых соедине­ний прочность при переменных нагрузках, как правило, не только не увеличивается, но, наоборот, уменьшается в связи с появ­лением источников резкой концентрации напряжений.

Следует избегать совмещения сварных швов с местами концентрации напряжений от формы. Следует обеспечивать равно­мерную толщину швов, в частности исклю­чать большие скопления наплавленного металла в местах пересечения швов. Следует так располагать швы, чтобы было удобно их сваривать и контроли­ровать.

Кардинальным средством повышения прочности сварных соединений при пере­менных нагрузках является наклеп дробью и чеканка.

В опытах на сварных лабораторных образцах дробеструйной обработкой уда­валось повысить прочность более чем в 1,5 раза и даже довести прочность до прочности целых образцов; прочность соединений электрошлаковой сваркой уда­валось повысить в 2 раза.

Выбор допускаемых напряже­ний. Допускаемые напряжения в сварных швах при статической нагрузке задаются в долях от допускаемого напряжения ос­новного металла соединяемых элементов на растяжение в зависимости от способа сварки.

Допускаемые напряжения основного ме­талла в металлических строительных и крановых конструкциях (в соответствии со «Строительными нормами и правилами») определяют по зависимости

где R - расчетное сопротивление разру­шению (R =0,9σТ для низкоуглеродистой и R =0,85σТ для низколегированной ста­ли); m - коэффициент условий работы, в большинстве случаев равный 0,9; при повышенной податливости элементов и в некоторых других случаях т =0,8; k H ­ -коэффициент надежности, обычно k H=1?1,2, для подкрановых балок при тяжелом режиме k H=1,3?1,5.

Обычно = σТ/(1,35?1,6) для углеродистых и = σТ/(1,5?1,7) для легированных сталей.

В строительных конструкциях при пе­ременных нагрузках расчетные сопротив­ления или допускаемое напряжение умно­жают на коэффициент γ= с/(а-br),если наибольшее напряжение растягивающее, или на коэффициент γ= с/(а-br),если наибольшее напряжение сжимающее, где r=σminmax характеристика цикла, а, b, с - коэффициенты.

Расчет на сопротивление усталости машиностроительных свар­ных конструкций можно прово­дить по основному металлу вблизи шва, если обеспечена статическая равнопроч­ность со швами.

Расчет на надежность сварных соединений. На основании отечественных и зарубежных исследований, содержащих диапазон рас­сеяния предела выносливости сварных соеди

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...